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Hyperdimensional Computing (HDC)

HDC: An effective solution for learning on edge
o Inspired by the neuroscience observation that human cerebellum cortex efficiently
and effortlessly processing memory, perception, and cognition information
Compared to state-of-the-art learning algorithms:

o In various applications, HDC provides comparable high-quality learning performance

o Notably faster convergence and higher efficiency
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Hyperdimensional Computing
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A Major Challenge

Static Encoding

o Existing encoding techniques lacks the capability to utilize and adapt to information learned during
the learning process - 7hey are never updated during training.

o Very high dimensionality is required to achieve reasonable accuracy

o Impedes the feasibilityand scalability of HDC on resource-constrained computing platforms
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DistHD: Motivation (1)

What about human brains?

o S0 much easier!
o Neurons in human brains dynamically change and regenerate all the time and provide
useful functionality when they learn new information.

Neuron Regeneration Regenerative Encoding?

Dynamic Representation?

Base Vectors




DistHD: Motivation (2)

An interesting observation:

o Define a top k-classification for a given data point as correct if the true label is one of the k most similar
classes selected.

o Accuracy (top-2) > Accuracy (top-1)
o Accuracy(top-3) - Accuracy(top-2) <« Accuracy(top-2) - Accuracy(top-1)

Top-1, Top-2, Top-3 Classification of State-of-the-art HDCs
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DistHD: Workflow Overview

Step 1: Top-2 Classification
o Adaptive learning
o Selecting top-2 labels

Step 2: Dimension Regeneration
o ldentifying undesired dimensions
o Regenerate undesired dimensions for enhanced learning quality

DIstHD is open-sourced. https://github.com/jwang235/DistHD
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DistHD: Top-2 Classification

Adaptive Learning*

Bundle encoded data points based on how much new
information is added to class hypervectors

If an encoded point H has the highest cosine similarity

with class C; while it is actually in class C;, we update class

hypervectors as:

Ci < Ci+n-[1-6(H;,C)]xXH;

Ci« Ci—n-|1—-68(H;,C)| xH;
Alarge §; (1 — §; = 0) indicates the input data point
already exist in the model or marginally mismatched, a
small §; (1 — §; = 1) indicate a noticeably new pattern.
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DistHD: Top-2 Labels

Selecting top-2 labels

In each training iteration, we utilize the partially trained model to select the top two most similar
classes for each training sample

Classify the result for each training sample as: correct, partially correct, incorrect.
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DistHD: Identifying Undesired Dimensions

Dimensions that mislead the classification?

Our strategy is simple: searching for dimensions that farthest away from the correct class
hypervectors and closest to the incorrect class hypervectors.

MY
— Undesired
Partial pleer [P LAy % § [ Dimensions ]
T C . oo o0 c C — E )
— o - (L = Cj) Cd) C/LZ 641 g g g ﬁ
oo iD|o oo 2 i1 ] ] A ) )
22| |8 A 4 2l Al 7| 8 O » [On
ey m ) —
s 'S ) | +——FHFH——— —— —
‘§§E>‘E~A fiplece] 2 | Ay 1 es §
< S« Q
b = Incorrect Ceple*1Cr2|Cra| | E X (=
——/ — (L ¢ {e'ii cj}) C/L@ oo C,iz C'Ll "é, ‘g >
| dim1 dim 2 dim 3 --- dim D
C]D o0 o0 C}Z 611 —

Column-wise Sum




DistHD: Identifying Undesired Dimensions
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For samples classified as partial, we search for:
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DistHD: Dimension Regeneration

Once we find the dimensions mislead the classification (i.e., hurt the accuracy), we
replace them with another randomly generated hypervector.
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Evaluation: Setup

We compare DistHD with the following learning algorithms:

o SOTA DNN with comparable inference latency

o SVM

o SOTA HDC without dynamic encoding (BaselineHD)

o NeuralHD* (the first dynamic HDC framework aiming at improving learning efficiency
by reducing dimensionalities)

*Zhuowen Zou et al, “Scalable edge-based hyperdimensional learning system with brain-inspired neural adaptation”, The
International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2021
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Evaluation: Accuracy

Comparable accuracy to SOTA DNN, 1.17% higher accuracy than SVM

6.96 % and 1.82% higher accuracy than BaselineHD (D=0.5k) and BaselineHD (D *=4k), respectively
1.89% higher accuracy than NeuralHD (D=0.5k)

ODNN OSVM OBaselineHD (D=0.5k) OBaselineHD (D*=4k) o NeuralHD (D=0.5k) 0 DistHD (D=0.5k) (this work)
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Evaluation: Efficiency

Training: Inference:
5.97x faster than SOTA DNN 8.09x faster than BaselineHD

1.15x% faster than BaselineHD, 2.32x faster
than NeuralHD

[_| DNN SVM BaselineHD (D*=4k) [ ] NeuralHD (D=0.5k) DistHD (D=0.5k) (this work)
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Other Evaluation Results
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other HDC algorithms
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Conclusion

Our work:

An accurate, efficient, and robust
HDC learning framework

With a powerful dynamic encoding
module, DistHD identifies and
regenerates dimensions that mislead
the classification and reduce the

learning accuracy

Future work:

Better dynamic encoding
/regenerating technique

Customized hardware acceleration
on resource-constrained platforms

Broader Applications & More
complicated dataset




Thank you for your attention.

DistHD is open-sourced: https://github.com/jwang235/DistHD

Paper Available at: https://sites.uci.edu/junyaowang/
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