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Overview

o Brief Intro of Hyperdimensional Computing

o A Major Challenge

o Motivation

o Workflow Overview

o Experimental Results



Hyperdimensional Computing (HDC)

o HDC: An effective solution for learning on edge

o  Inspired by the neuroscience observation that human cerebellum cortex efficiently 

and effortlessly processing memory, perception, and cognition information

o Compared to state-of-the-art learning algorithms:

o  In various applications, HDC provides comparable high-quality learning performance

o  Notably faster convergence and higher efficiency



Hyperdimensional Computing

High-dimensional

Holographic Encoding

Well-trackable AlgebraEfficient

Cerebellum

Robustness
Brains can work with multiple noisy inputs. 

Cerebellum works with sparse 
high-dimensional representations.

Brains work at around as low as 20W of energy.

Basic elements are hypervectors.

Information of every feature is found on 
all the dimensions of the hypervectors.

Well-defined and highly-parallel operations.
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A Major Challenge
o Static Encoding

o Existing encoding techniques lacks the capability to utilize and adapt to information learned during 
the learning process – They are never updated during training. 

o Very high dimensionality is required to achieve reasonable accuracy

o Impedes the feasibility and scalability of HDC on resource-constrained computing platforms
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DistHD: Motivation (1)
oWhat about human brains? 

o So much easier! 
o Neurons in human brains dynamically change and regenerate all the time and provide 

useful functionality when they learn new information.

Injury Degenerate Regenerate

Neuron Regeneration Regenerative Encoding?
Dynamic Representation?

Base Vectors

⋯



DistHD: Motivation (2) 
o  An interesting observation: 

o Define a top 𝑘𝑘-classification for a given data point as correct if the true label is one of the 𝑘𝑘 most similar 
classes selected. 

o Accuracy (top-2) ≫ Accuracy (top-1)
o Accuracy(top-3) – Accuracy(top-2) ≪ Accuracy(top-2) – Accuracy(top-1)
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DistHD: Workflow Overview

o Step 1: Top-2 Classification
o  Adaptive learning
o  Selecting top-2 labels

o Step 2: Dimension Regeneration
o  Identifying undesired dimensions
o  Regenerate undesired dimensions for enhanced learning quality

DistHD is open-sourced: https://github.com/jwang235/DistHD  



DistHD: Top-2 Classification
o  Adaptive Learning*

o Bundle encoded data points based on how much new 
information is added to class hypervectors

o  If an encoded point ℋ has the highest cosine similarity 
with class 𝒞𝒞𝑖𝑖 while it is actually in class 𝒞𝒞𝑗𝑗, we update class 
hypervectors as:  

𝒞𝒞𝑖𝑖 ← 𝐶𝐶𝑖𝑖 + 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ𝑖𝑖 ,𝒞𝒞𝑖𝑖 × ℋ𝑖𝑖

𝒞𝒞𝑗𝑗 ← 𝐶𝐶𝑗𝑗 − 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ𝑖𝑖,𝒞𝒞𝑗𝑗 × ℋ𝑖𝑖

o A large 𝛿𝛿𝑙𝑙 1 − 𝛿𝛿𝑙𝑙 ≈ 0  indicates the input data point 
already exist in the model or marginally mismatched, a 
small 𝛿𝛿𝑙𝑙 1 − 𝛿𝛿𝑙𝑙 ≈ 1  indicate a noticeably new pattern. 
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𝓒𝓒𝟏𝟏𝟐𝟐⋯ 𝓒𝓒𝟏𝟏𝟏𝟏𝓒𝓒𝟏𝟏𝑫𝑫
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Class Hypervectors

 Highly parallel matrix operations
  Capture uncommon patterns and 

reduce model saturation
*Alejandro Hernández-Cano et al, "OnlineHD: Robust, 
Efficient, and Single-Pass Online Learning Using 
Hyperdimensional System", DATE, 2021.



DistHD: Top-2 Labels
o  Selecting top-2 labels

o  In each training iteration, we utilize the partially trained model to select the top two most similar 
classes for each training sample

o  Classify the result for each training sample as: correct, partially correct, incorrect. 
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Regenerative Encoding
 Dynamic Representation

Base Vectors

Dynamic Encoding
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Correct 
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DistHD: Identifying Undesired Dimensions
o  Dimensions that mislead the classification?

o Our strategy is simple: searching for dimensions that farthest away from the correct class 
hypervectors and closest to the incorrect class hypervectors.
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DistHD: Identifying Undesired Dimensions
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o  For samples classified as partial, we search for:
arg max

𝒹𝒹
𝒽𝒽𝑑𝑑 − 𝒞𝒞𝒿𝒿𝑑𝑑 ∩ arg min

𝒹𝒹
𝒽𝒽𝑑𝑑 − 𝒞𝒞𝒾𝒾𝑑𝑑 (1 ≤ 𝒹𝒹 ≤ 𝒟𝒟) ⟹ℳ𝓉𝓉 = 𝛼𝛼 ⋅ 𝒽𝒽 − 𝒞𝒞𝒿𝒿 − 𝛽𝛽 ⋅ 𝒽𝒽 − 𝒞𝒞𝒾𝒾

o  Similarly, for samples classified as incorrect, 
𝒩𝒩𝓉𝓉 = 𝛼𝛼 ⋅ 𝒽𝒽 − 𝒞𝒞ℒ − 𝛽𝛽 ⋅ 𝒽𝒽 − 𝒞𝒞𝒾𝒾 − 𝜃𝜃 ⋅ 𝒽𝒽 − 𝒞𝒞𝒿𝒿

ℳ‘ = 𝑠𝑠𝑠𝑠𝑠𝑠 ℳ𝓉𝓉 ,𝒩𝒩‘ = 𝑠𝑠𝑠𝑠𝑠𝑠 𝒩𝒩𝓉𝓉



DistHD: Dimension Regeneration
oOnce we find the dimensions mislead the classification (i.e., hurt the accuracy), we 

replace them with another randomly generated hypervector.
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Evaluation: Setup

o We compare DistHD with the following learning algorithms: 

o  SOTA DNN with comparable inference latency

o  SVM

o  SOTA HDC without dynamic encoding (BaselineHD)

oNeuralHD* (the first dynamic HDC framework aiming at improving learning efficiency 

by reducing dimensionalities)

*Zhuowen Zou et al, “Scalable edge-based hyperdimensional learning system with brain-inspired neural adaptation”, The 
International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2021



Evaluation: Accuracy
Comparable accuracy to SOTA DNN, 1.17% higher accuracy than SVM

6.96 % and 1.82% higher accuracy than BaselineHD (D=0.5k) and BaselineHD (D*=4k), respectively

1.89% higher accuracy than NeuralHD (D=0.5k)
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Evaluation: Efficiency
o Training: 

5.97× faster than SOTA DNN

1.15× faster than BaselineHD, 2.32× faster 
than NeuralHD
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o Inference:

  8.09× faster than BaselineHD



Other Evaluation Results
o ROC Curve with Different Hyperparameters

o Faster Convergence Speed of DistHD Compared to 
other HDC algorithms

o  Higher Robustness Against Noise Hardware Error 1.0% 2.0% 5.0% 10.0% 15.0%
DNN 3.9% 10.7% 17.8% 32.1% 41.2%

0.5k 1.1% 1.7% 3.6% 5.4% 7.2%
1k 0.7% 1.3% 2.8% 4.2% 6.4%
2k 0.4% 0.7% 1.3% 3.7% 5.9%
4k 0.0% 0.0% 1.0% 3.1% 4.1%

0.5k 1.9% 2.3% 4.5% 7.9% 10.4%
1k 1.2% 1.7% 3.7% 6.8% 9.9%
2k 0.5% 1.1% 2.5% 5.9% 8.7%
4k 0.0% 0.5% 1.6% 4.8% 8.0%

0.5k 2.3% 4.7% 8.4% 13.1% 17.3%
1k 1.6% 3.2% 6.9% 12.7% 15.9%
2k 0.9% 2.1% 4.7% 10.2% 13.7%
4k 0.2% 1.0% 2.9% 7.4% 11.7%

0.5k 3.6% 7.9% 13.7% 18.3% 22.9%
1k 2.7% 6.1% 10.8% 15.7% 20.1%
2k 1.9% 4.9% 8.1% 14.1% 19.8%
4k 1.4% 3.6% 5.1% 12.8% 17.6%
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Conclusion

o  Our work: 

oAn accurate, efficient, and robust 
HDC learning framework

oWith a powerful dynamic encoding 
module, DistHD identifies and 
regenerates dimensions that mislead 
the classification and reduce the 
learning accuracy 

o  Future work: 

oBetter dynamic encoding 
/regenerating technique 

oCustomized hardware acceleration 
on resource-constrained platforms

oBroader Applications & More 
complicated dataset



Thank you for your attention. 

DistHD is open-sourced: https://github.com/jwang235/DistHD

Paper Available at: https://sites.uci.edu/junyaowang/   

https://github.com/jwang235/DistHD
https://sites.uci.edu/junyaowang/
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