

DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification

â

Junyao Wang, Sitao Huang, Mohsen Imani

University of California, Irvine

Overview

- Brief Intro of Hyperdimensional Computing
- A Major Challenge
- Motivation
- Workflow Overview
- Experimental Results

Hyperdimensional Computing (HDC)

- HDC: An effective solution for learning on edge
 - Inspired by the neuroscience observation that human cerebellum cortex efficiently and effortlessly processing memory, perception, and cognition information
- Compared to state-of-the-art learning algorithms:
 - In various applications, HDC provides comparable high-quality learning performance
 - Notably faster convergence and higher efficiency

Hyperdimensional Computing

Robustness

Brains can work with multiple noisy inputs.

Efficient

Brains work at around as low as 20W of energy.

Holographic Encoding

Information of every feature is found on all the dimensions of the hypervectors.

Well-trackable Algebra

Well-defined and highly-parallel operations.

A Major Challenge

• Static Encoding

- Existing encoding techniques lacks the capability to utilize and adapt to information learned during the learning process – *They are never updated during training.*
- Very high dimensionality is required to achieve reasonable accuracy
- Impedes the *feasibility* and *scalability* of HDC on resource-constrained computing platforms

RSITY OF CPL TO THE ALL OF TO TO THE ALL OF TO TO THE ALL OF TO TO THE ALL OF THE ALL OF

DistHD: Motivation (1)

• What about human brains?

- So much easier!
- Neurons in human brains *dynamically change and regenerate* all the time and provide useful functionality when they learn new information.

Neuron Regeneration

DistHD: Motivation (2)

- An interesting observation:
 - Define a top *k*-classification for a given data point as *correct* if the true label is one of the *k* most similar classes selected.
 - \circ Accuracy (top-2) \gg Accuracy (top-1)
 - Accuracy(top-3) Accuracy(top-2) ≪ Accuracy(top-2) Accuracy(top-1)

60

DistHD: Workflow Overview

Step 1: Top-2 Classification

- Adaptive learning
- Selecting top-2 labels

Step 2: Dimension Regeneration

- Identifying undesired dimensions
- Regenerate undesired dimensions for enhanced learning quality

DistHD is open-sourced. https://github.com/jwang235/DistHD

DistHD: Top-2 Classification

Adaptive Learning*

- Bundle encoded data points based on how much new information is added to class hypervectors
- If an encoded point \mathcal{H} has the highest cosine similarity with class \mathcal{C}_i while it is actually in class \mathcal{C}_j , we update class hypervectors as:

 $C_i \leftarrow C_i + \eta \cdot [1 - \delta(\mathcal{H}_i, \mathcal{C}_i)] \times \mathcal{H}_i$ $C_j \leftarrow C_j - \eta \cdot [1 - \delta(\mathcal{H}_i, \mathcal{C}_j)] \times \mathcal{H}_i$

• A large $\delta_l (1 - \delta_l \approx 0)$ indicates the input data point already exist in the model or marginally mismatched, a small $\delta_l (1 - \delta_l \approx 1)$ indicate a noticeably new pattern.

Adaptive Learning

- ✓ Highly parallel matrix operations
- Capture uncommon patterns and reduce model saturation

*Alejandro Hernández-Cano et al, "OnlineHD: Robust, Efficient, and Single-Pass Online Learning Using Hyperdimensional System", DATE, 2021.

DistHD: Top-2 Labels

• Selecting top-2 labels

- In each training iteration, we utilize the partially trained model to select the top two most similar classes for each training sample
- Classify the result for each training sample as: correct, partially correct, incorrect.

DistHD: Identifying Undesired Dimensions

• Dimensions that mislead the classification?

 Our strategy is simple: searching for dimensions that farthest away from the correct class hypervectors and closest to the incorrect class hypervectors.

DistHD: Identifying Undesired Dimensions

- For samples classified as partial, we search for: $\arg \max_{d} |h_{d} - C_{jd}| \cap \arg \min_{d} |h_{d} - C_{id}| (1 \le d \le D) \Longrightarrow \mathcal{M}_{t} = \alpha \cdot |h - C_{j}| - \beta \cdot |h - C_{i}|$
- Similarly, for samples classified as incorrect,

$$N_{t} = \alpha \cdot |h - C_{\mathcal{L}}| - \beta \cdot |h - C_{i}| - \theta \cdot |h - C_{j}|$$
$$\mathcal{M}' = sum(\mathcal{M}_{t}), \mathcal{N}' = sum(\mathcal{N}_{t})$$

DistHD: Dimension Regeneration

 Once we find the dimensions mislead the classification (i.e., hurt the accuracy), we replace them with another randomly generated hypervector.

Dynamic Encoding

Adaptive Learning

Dimension Regeneration

Evaluation: Setup

- We compare DistHD with the following learning algorithms:
 - SOTA DNN with comparable inference latency

o SVM

- SOTA HDC without dynamic encoding (BaselineHD)
- NeuralHD* (the first dynamic HDC framework aiming at improving learning efficiency by reducing dimensionalities)

*Zhuowen Zou et al, "Scalable edge-based hyperdimensional learning system with brain-inspired neural adaptation", The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), 2021

Evaluation: Accuracy

Comparable accuracy to SOTA DNN, 1.17% higher accuracy than SVM

- ✓ 6.96 % and 1.82% higher accuracy than BaselineHD (D=0.5k) and BaselineHD (D*=4k), respectively
- ✓ 1.89% higher accuracy than NeuralHD (D=0.5k)

Evaluation: Efficiency

Training:

- \checkmark 5.97 × faster than SOTA DNN
- ✓ 1.15× faster than BaselineHD, 2.32× faster than NeuralHD

Inference:

8.09× faster than BaselineHD

Other Evaluation Results

- ROC Curve with Different Hyperparameters
- Faster Convergence Speed of DistHD Compared to other HDC algorithms

Hardware Error			1.0%	2.0%	5.0%	10.0%	15.0%
DNN			3.9%	10.7%	17.8%	32.1%	41.2%
DistHD	1 bit	0.5k	1.1%	1.7%	3.6%	5.4%	7.2%
		1k	0.7%	1.3%	2.8%	4.2%	6.4%
		2k	0.4%	0.7%	1.3%	3.7%	5.9%
		4k	0.0%	0.0%	1.0%	3.1%	4.1%
	2 bits	0.5k	1.9%	2.3%	4.5%	7.9%	10.4%
		1k	1.2%	1.7%	3.7%	6.8%	9.9%
		2k	0.5%	1.1%	2.5%	5.9%	8.7%
		4k	0.0%	0.5%	1.6%	4.8%	8.0%
	4 bits	0.5k	2.3%	4.7%	8.4%	13.1%	17.3%
		1k	1.6%	3.2%	6.9%	12.7%	15.9%
		2k	0.9%	2.1%	4.7%	10.2%	13.7%
		4k	0.2%	1.0%	2.9%	7.4%	11.7%
	8 bits	0.5k	3.6%	7.9%	13.7%	18.3%	22.9%
		1k	2.7%	6.1%	10.8%	15.7%	20.1%
		2k	1.9%	4.9%	8.1%	14.1%	19.8%
		4k	1.4%	3.6%	5.1%	12.8%	17.6%

Conclusion

• Our work:

- An accurate, efficient, and robust
 HDC learning framework
- With a powerful dynamic encoding module, DistHD identifies and regenerates dimensions that mislead the classification and reduce the learning accuracy

• Future work:

- Better dynamic encoding /regenerating technique
- Customized hardware acceleration
 on resource-constrained platforms
- Broader Applications & More complicated dataset

Thank you for your attention.

DistHD is open-sourced: <u>https://github.com/jwang235/DistHD</u>

Paper Available at: https://sites.uci.edu/junyaowang/

