

Late Breaking Results: Scalable and Efficient Hyperdimensional Computing for Network Intrusion Detection Junyao Wang, Hanning Chen, Mariam Issa, Sitao Huang, Mohsen Imani junyaow4@uci.edu, University of California, Irvine, United States

Security on Edge Devices

are developed for security attack detection \Rightarrow So Expensive!

- Security on edge devices?
- Real-time attack detection?
- Soution1:
- Hyperdimensional Computing (HDC)!

Existing HDC use static encoders

- \Rightarrow Requires Extremely high dimensionality to achieve reasonable accuracy
- Intensive memory & Computation Huge latency in attack detection!
- Solution 2:

Dynamic Encoding!

Evaluations

• <u>Accuracy</u>

- Comparable accuracy to SOTA DNNs, 1.63% higher accuracy than SVMs.
- Comparable accuracy to SOTA HDC but use $8.0 \times$ lower dimensionality.
- 4.28% higher accuracy than SOTA HDC using the same dimensionality. \checkmark

An Overview of Our Proposed HDC Framework for Network Intrusion Detection

Cerebellum Sparse high dimensional representations Robustness

High-dimensional

Our basic elements are hypervectors (~thousands)

CIC-IDS-2018

CIC-IDS-2017

UNSW-NB15

NSL-KDD

• Efficiency

- ✓ Training: $2.47 \times \text{faster than SOTA DNNs}$, $1.85 \times \text{faster than SOTA HDC}$.
- ✓ Inference: $15.29 \times \text{faster than SOTA HDC}$.

- Robustness Against Hardware Failures
 - \checkmark 12.9 × higher robustness than SOTA DNNs
 - ✓ Maximized robustness at 1-bit precision

Robustness Against Hardware Noise Hardware Error 1.0% 2.0% 5.0% 10.0% 15.0% DNN 3.9% 10.7% 17.8% 32.1% 41.2% 0.0% 0.0% 1.0% 3 1% A 1% 1 hit

Our Work (*D*=0.5k)

- **Cross Platform Evaluation**
- ✓ CPUs demonstrate more strength for high bitwidth data
- ✓ FPGA shows excellent energy efficient improvement compared to CPU

	D *	CPU	FPGA	
32 bits	1.2k	6.6×	16×	
16 bits	2.1k	4.0×	24×	
8 bits	3.6k	2.4×	34×	
4 bits	5.6k	1.5×	31×	
2 bits	7.5k	1.2×	28×	
1 bit	8.8k	1.0×	28×	

against noise Works well with multiple noisy input and computation

Efficient The brain works at as low as 20W of energy

Holographic encoding Info of every feature is on all the dimensions of hypervectors

> HDC Algebra Simple and fast, very efficient computation.

- **Binding (+):** Element-wise addition, i.e., $\mathcal{H}_{bundle} = \mathcal{H}_1 + \mathcal{H}_2$, $\delta(\mathcal{H}_{bundle}, \mathcal{H}_1) \gg 0$, $\delta(\mathcal{H}_{bundle}, \mathcal{H}_3) \approx 0$ **Bundling:** Element-wise multiplication, i.e., $\mathcal{H}_{bind} = \mathcal{H}_1 * \mathcal{H}_2$, $\delta(\mathcal{H}_{bind}, \mathcal{H}_1) \approx 0$, $\delta(\mathcal{H}_{bind}, \mathcal{H}_2) \approx 0$
- **Reasoning:** measuring the similarity of hypervectors, e.g., cosine similarity $\delta(\mathcal{H}_1, \mathcal{H}_2) = \frac{\mathcal{H}_1 \cdot \mathcal{H}_2}{\|\mathcal{H}_1\| \cdot \|\mathcal{H}_2\|}$

Conclusion

This work:

- ✓ The first time for the dynamic HDC learning technique being applied in cyber security
- Identify insignificant dimensions to reduce unnecessary high-dimensional computations \checkmark 2.47 × faster training and 15.29 × faster inference than SOTA learning methods

Future work:

- Challenge 1: The Accuracy of HDC
- Currently still lower than deep learning methodologies in many cases
- Challenge 2: Explanability of HDC
- Understanding HDC from the theoretical perspective is currently very limited

Selected Reference

		0.070	0.070	1.070	0.170	4.170	
ork	2 bits	1.9%	2.3%	4.5%	7.9%	10.4%	8
Ň	4 bits	2.3%	4.7%	8.4%	13.1%	17.3%	4 2
nno	8 bits	3.6%	7.9%	13.7%	18.3%	22.9%	-

1. Junyao Wang, et. al. DistHD: A Learner-Aware Encoding Method for Hyperdimensional Classification, the 60th Annual Design Automation Conference 2023. Junyao Wang, et. al. Late Breaking Result: Scalable and Efficient Hyperdimensional Computing

for Network Intrusion Detection, the 60th Annual Design Automation Conference 2023.

