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Increasingly sophisticated deep learning models An Overview of Our Proposed HDC Framework for Network Intrusion Detection

are developed for security attack detection

Existing HDC use static encoders
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technique being applied in cyber security
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 Cross Platform Evaluation

v' CPUs demonstrate more strength for high
bitwidth data

 Robustness Against Hardware Failures
v' 12.9 x higher robustness than SOTA DNNs
v' Maximized robustness at 1-bit precision
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