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Robustness Against Hardware Noise
Hardware Error 1.0% 2.0% 5.0% 10.0% 15.0%

DNN 3.9% 10.7% 17.8% 32.1% 41.2%

1 bit 0.0% 0.0% 1.0% 3.1% 4.1%

2 bits 1.9% 2.3% 4.5% 7.9% 10.4%

4 bits 2.3% 4.7% 8.4% 13.1% 17.3%

8 bits 3.6% 7.9% 13.7% 18.3% 22.9%O
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DNN SVM BaselineHD (D=0.5k) Baseline HDC (D*=4k) Our Work (D=0.5k)
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• Accuracy
 Comparable accuracy to SOTA DNNs, 1.63% higher accuracy than SVMs.
 Comparable accuracy to SOTA HDC but use 8.0× lower dimensionality.
  4.28% higher accuracy than SOTA HDC using the same dimensionality. 
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• Efficiency
 Training: 2.47 × faster than SOTA DNNs, 1.85 × faster than SOTA HDC. 
 Inference: 15.29 × faster than SOTA HDC. 

• Robustness Against Hardware Failures
 12.9 × higher robustness than SOTA DNNs
 Maximized robustness at 1-bit precision

• Cross Platform Evaluation
 CPUs demonstrate more strength for high 

bitwidth data
 FPGA shows excellent energy efficient 

improvement compared to CPU
D* CPU FPGA

32 bits 1.2k 6.6× 16×
16 bits 2.1k 4.0× 24×
8 bits 3.6k 2.4× 34×
4 bits 5.6k 1.5× 31×
2 bits 7.5k 1.2× 28×
1 bit 8.8k 1.0× 28×

Conclusion
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Challenge 2: 
Existing HDC use static encoders
⇒ Requires Extremely high dimensionality to 
achieve reasonable accuracy
Intensive memory  & Computation
 Huge latency in attack detection! 
Solution 2: 
Dynamic Encoding!

Challenge 1: 
Increasingly sophisticated deep learning models 
are developed for security attack detection
⇒ So Expensive! 
Security on edge devices?
 Real-time attack detection?
Soution1: 
Hyperdimensional Computing (HDC)!
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HDC Introduction

• Binding (+): Element-wise addition, i.e., ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 + ℋ2,  𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≫ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ3 ≈ 0
• Bundling: Element-wise multiplication, i.e., ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 ∗ℋ2, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≈ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ2 ≈ 0

• Reasoning: measuring the similarity of hypervectors, e.g., cosine similarity 𝛿𝛿 ℋ1,ℋ2 = ℋ1�ℋ2
ℋ1 ⋅ ℋ2

HDC Algebra
Simple and fast, 

very efficient computation.

Efficient
The brain works at as low as
 20W of energy

Cerebellum
Sparse high dimensional 
representations 
Robustness 
against noise
Works well with multiple 
noisy input and computation

Holographic encoding
Info of every feature is on all the 

dimensions of hypervectors

High-dimensional
Our basic elements are 

hypervectors (~thousands)

Our Methodology
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Eliminating Insignificant Dimensions:Adaptive Learning:

An Overview of Our Proposed HDC Framework for Network Intrusion Detection
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If ℋ has maximum similarity with class ℓ′ while its 
true label is ℓ:  

𝒞𝒞ℓ ← 𝒞𝒞ℓ + 𝜂𝜂 1 − 𝛿𝛿𝑙𝑙 × ℋ
𝒞𝒞ℓ‘ ← 𝒞𝒞ℓ’ + 𝜂𝜂 1 − 𝛿𝛿𝑙𝑙‘ × ℋ

Eliminate model saturation! 
Better capture uncommon data samples!
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Dropped Dimensions (%)

From Low Variances

From High Variance 

Random

Dimensions with similar values over all classes 
store common info and thereby playing a minor 
role in classification!  We can drop them! 
Dimension Regeneration: 
ℱ = 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛 𝑓𝑓𝑖𝑖 ∈ ℝ  
⟹ ℋ = ℎ1, ℎ2, … , ℎ𝒟𝒟 (0 ≤ ℎ𝑖𝑖 ≤ 1, ℎ𝑖𝑖 ∈ ℝ) .
ℎ𝑖𝑖 = cos ℬ𝑖𝑖 ⋅ ℱ + 𝑐𝑐 × sin(ℬ𝑖𝑖 ⋅ ℱ). 
ℬ𝑖𝑖 = 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 ,  𝑏𝑏𝑖𝑖~Gaussian 0,1 , 𝑐𝑐~Uniform[0,2𝜋𝜋] 

This work:
 The first time for the dynamic HDC learning 

technique being applied in cyber security 
  Identify insignificant dimensions to reduce 

unnecessary high-dimensional computations
 2.47 × faster training and 15.29 × faster 

inference than SOTA learning methods

Future work:
Challenge 1: The Accuracy of HDC
 Currently still lower than deep learning 

methodologies in many cases
  Challenge 2: Explanability of HDC
 Understanding HDC from the theoretical 

perspective is currently very limited
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