

DOMINO: <u>Domain-Invariant</u> Hyperdimensional Classification for Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque University of California, Irvine

Multi-Sensor Time Series Data

- Rapid evolution of the Internet of Things (IoT)
- Heterogeneously connected sensors capture information over time, constituting muti-sensor time series data
- Sophisticated DNNs, e.g., RNNs, have been proposed to capture spatial and temporal dependencies in these data
- Hyperdimensional Computing (HDC) has been introduced
 - ✓ Fast convergence
 - ✓ High computational efficiency
 - ✓ Ultra-robustness against noise

Too complicated for resource-constrained edge platforms!

Distribution Shift

Here we define the problem:

- Suppose we have $k \; (k \geq 1)$ source domains in training data $\mathcal{X}_{\mathcal{S}}$ and an output space \mathcal{Y}
- our goal is to train a classification model $f: \mathcal{X}_{\mathcal{S}} \to \mathcal{Y}$
- f should be able to capture latent features and make predictions for data samples from test data/target domain $\mathcal{X}_{\mathcal{T}}$

Challenge

- The distributions in source domains and target domains can be different, $\mathcal{P}_{(\chi_{S}, y)} \neq \mathcal{P}_{(\chi_{T}, y)}$
- A model trained with samples in $\mathcal{X}_{\mathcal{S}}$ may fail to adapt to samples from $\mathcal{X}_{\mathcal{T}}$

Challenges

- Existing HDCs are not immune to the distribution shift issue
 - The accuracy of leave-one-domain-out (LODO) cross-validation (CV) is notably lower than k-fold CV
 - LODO CV: training a model on all the available data except for one domain that is left out for inference
 - -k-fold CV: randomly divides all data into k subsets with k-1 subsets for training and the remaining one for inference
- Can we filter out those domain-variant dimensions?

Our Work

- **DOMINO**, the first HDC-based domain generalization algorithm that dynamically identifying and regenerating domain-variant dimensions.
 - Time Series Encoding
 - Domain Specific Modeling
 - Domain Generalization

Time Series Encoding

- HDC starts with encoding low-dimensional inputs to hypervectors, each containing thousands of elements.
- Assign random hypervectors \mathcal{H}_{max} and \mathcal{H}_{min} to represent the maximum and minimum signal values, i.e., \mathcal{Y}_{max} and \mathcal{Y}_{min} .
- Vector quantization to values between y_{max} and y_{min} . For instance,

$$\mathcal{H}_{t_3} = \mathcal{H}_{t_1} + \frac{y_{t_3} - y_{t_1}}{y_{t_2} - y_{t_1}} \cdot \left(\mathcal{H}_{t_2} - \mathcal{H}_{t_1}\right); \ \mathcal{H'}_{t_3} = \mathcal{H'}_{t_2} + \frac{y'_{t_3} - y'_{t_2}}{y'_{t_1} - y'_{t_2}} \cdot \left(\mathcal{H'}_{t_1} - \mathcal{H'}_{t_2}\right)$$

- Temporally sorting by rotation shifts (ρ), e.g., $\mathcal{H} = \rho \rho \mathcal{H}_{t_1} * \rho \mathcal{H}_{t_2} * \mathcal{H}_{t_3}$
- Spatially integrating by binding, e.g., $\mathcal{H} = \mathcal{S}_1 * \mathcal{H}_1 + \dots + \mathcal{S}_n * \mathcal{H}_n$

Domain-Specific Modeling

- Construct one HDC model for each subset
 - Based on cosine similarity between ${\mathcal H}$ and class hypervectors:

$$\delta(\mathcal{H}, \mathcal{C}_{i}) = \frac{\mathcal{H} \cdot \mathcal{C}_{i}}{\|\mathcal{H}\| \cdot \|\mathcal{C}_{i}\|} = \frac{\mathcal{H}}{\|\mathcal{H}\|} \cdot \frac{\mathcal{C}_{i}}{\|\mathcal{C}_{i}\|} \propto \mathcal{H} \cdot Normalize(\mathcal{C}_{i})$$

- Scaling a weight to each sample depending on how much new information is added to class hypervectors. If \mathcal{H} has highest cosine-similarities to \mathcal{C}_i while its true label is \mathcal{C}_i :

$$\begin{aligned} \mathcal{C}_{i} \leftarrow \mathcal{C}_{i} - \eta \cdot \left[1 - \delta(\mathcal{H}, \mathcal{C}_{i})\right] \times \mathcal{H} \\ \mathcal{C}_{j} \leftarrow \mathcal{C}_{j} + \eta \cdot \left[1 - \delta(\mathcal{H}, \mathcal{C}_{j})\right] \times \mathcal{H} \end{aligned}$$

A large $\delta(\mathcal{H}, \cdot)$ indicates the input data points is marginally mismatches, while a small $\delta(\mathcal{H}, \cdot)$ indicates a noticeably new pattern.

Our algorithm provides a higher chance for non-common patterns to be considered.

Domain Generalization (DG)

- *Class-Specific Aggregation:* extracting class hypervectors from each domain-specific model
- **Domain-Invariant Filter:** identifying and regenerating domain-invariant dimensions
- *Model Ensemble:* combining multiple domain-specific models into a single domain-invariant model

DG: Class-Specific Aggregation

• For each class *i*: extract the class hypervector from every domain-specific model representing class *i* to form a class-specific matrix.

DG: Domain-Variant Filter

- For each class-specific matrix, we calculate the variance of each dimension to measure its dispersion.
- Dimensions with very different values for the same class indicate that they store highly differentiated patterns, and therefore are considered domain-variant.
- We select dimensions with the highest variance and their corresponding projection matrix with a new randomly generated vector.

DG: Model Ensemble

- We assemble all the domain-specific models to construct a general domain-invariant model based on the weight of each domain.
- We then ensemble domain specific models $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$ by $\mathcal{M} = \mathcal{P}_1 \cdot \mathcal{M}_1 + \mathcal{P}_2 \cdot \mathcal{M}_2 + \dots + \mathcal{P}_k \cdot \mathcal{M}_k$.
- For each source domain $\lambda \in [0, k]$, we calculate the proportion of the data from domain λ as $\mathcal{P}_{\lambda} = \frac{\mathcal{N}_{\lambda}}{\mathcal{N}_{total}}$, where \mathcal{N}_{λ} denotes the number of sample from domain λ and \mathcal{N}_{total} denotes the total number of samples.

$$\begin{array}{c}
 \mathcal{M}_{1} \xrightarrow{\times \mathcal{P}_{1}} \\
 \mathcal{M}_{2} \xrightarrow{\times \mathcal{P}_{2}} \\
 \mathcal{M}_{2} \xrightarrow{\times \mathcal{P}_{2}} \\
 \mathcal{M}_{k} \xrightarrow{\times \mathcal{P}_{k}} \end{array} \mathcal{M} = \sum \mathcal{M}_{i} \cdot \mathcal{P}_{i}$$

Junyao Wang, University of California, Irvine

Evaluations

- Experimental Setup
 - Server CPU
 - Embedded CPU
 - Embedded GPU
- Baselines
 - CNN-based domain-generalization algorithms: Representation Self-Challenging (RSC) [1] and AND-mask [2]
 - SOTA HDC with static encoder not considering domain generalization, denoted as BaselineHD [3]
 - i. Physical Dimensionality (D = 0.5k): a compressed dimensionality designed for resource-constrained platforms

Effective Dimensionality ($D^* = 4k$): physical dimensionality + all the regenerated dimensions during the retraining iterations

Junyao Wang, University of California, Irvine

[1] Huang, Zeyi, et al. "Self-challenging improves cross-domain generalization.", ECCV 2020.
[2] Parascandolo, Giambattista, et al. "Learning explanations that are hard to vary.", ICLR, 2020.
[3] Hernández-Cano, Alejandro, et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.", DATE, 2021.

Evaluations (Cont.)

- Taking human activity recognition as the application use case, we evaluate DOMINO on widely-used multi-sensor time series datasets:
 - DSADS
 - USC-HAD
 - PAMAP2
- * Please refer to our paper for detailed data preprocessing steps.

[1] Barshan, Billur, and Murat Cihan Yüksek. "Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units.", The Computer Journal, 2014.

[2] Zhang, Mi, and Alexander A. Sawchuk. "USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors.", ACM conference on ubiquitous computing. 2012.

[3] Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset for activity monitoring." 2012 16th international symposium on wearable computers. IEEE, 2012.

Accuracy: LODO Accuracy

- Compared to SOTA CNNs:
- ✓ 0.96% higher than RSC
- ✓ 2.04% higher than AND-mask
- Compared to BaselineHD:
- ✓ 11.70% higher than BaselineHD ($D^* = 4k$)
- ✓ 15.93% higher than BaselineHD (D = 0.5k)

Accuracy: Imbalanced Training Data

- Imbalanced data: certain domains contribute a disproportionately larger portion of the data while other domains are represented by considerably smaller amounts
- DOMINO outperforms SOTA CNN-based DG approaches by exhibiting on average 1.18% and 2.58% higher accuracy than RSC and AND-mask, respectively

Efficiency

LEEE/ACM 2023 INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN 42nd Edition

On Server CPU, DOMINO exhibits:

- 16.34× faster training than RSC
- 14.17× faster training than AND-mask
- 2.89 × faster inference than RSC
- 1.97 × faster inference than AND-mask

On embedded devices:

- Raspberry Pi:
 - ✓ 19.79 × faster than RSC
 - ✓ 15.31× faster than AND-mask
- Jetson Nano
 - ✓ 58.44 × faster than RSC
 - ✓ 10.49 × faster than AND-mask

Other Results

Thank You For Your Attention.

DOMINO: <u>Domain-Invariant</u> Hyperdimensional Classification for Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque

University of California, Irvine

