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Multi-Sensor Time Series Data

Rapid evolution of the Internet of Things (loT)

Heterogeneously connected sensors capture information over
time, constituting muti-sensor time series data

Sophisticated DNNs, e.g., RNNs, have been proposed to capture
spatial and temporal dependencies in these data

Hyperdimensional Computing (HDC) has been introduced
v’ Fast convergence
v’ High computational efficiency

v’ Ultra-robustness against noise

Junyao Wang, University of California, Irvine
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Distribution Shift

'® Here we define the problem:

* Suppose we have k (k = 1) source domains in training data X5
and an output space Y

* our goal is to train a classification model f: X5 = Y
* f should be able to capture latent features and make
predictions for data samples from test data/target domain X

" Challenge

* The distributions in source domains and target domains can be
different, Pox, vy # Pocry)

~* Amodel trained with samples in X's may fail to adapt to
B samples from X7

Junyao Wang, University of California, Irvine
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Challenges

e Existing HDCs are not immune to the distribution shift issue

— The accuracy of leave-one-domain-out (LODO) cross-validation (CV) is
notably lower than k-fold CV

— LODO CV: training a model on all the available data except for one domain
that is left out for inference

— k-fold CV: randomly divides all data into k subsets with k — 1 subsets for
training and the remaining one for inference
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Our Work

* DOMINO, the first HDC-based domain generalization algorithm that
dynamically identifying and regenerating domain-variant dimensions.

— Time Series Encoding
— Domain Specific Modeling

— Domain Generalization
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Time Series Encoding

 HDC starts with encoding low-dimensional inputs to hypervectors, each containing
thousands of elements.

* Assign random hypervectors H,,,, and H,,i, to represent the maximum and minimum
signal values, i.e., Ymax aNd Ymin-

* Vector quantization to values between 4,4, and 4. FOr instance,

Ve — Ve, y,t3 - y,tz

Ve, — Ve, y,tl - y,tz

« Temporally sorting by rotation shifts (p), e.g., H = ppH; * pH, * Hy,

* Spatially integrating by binding,e.g., H =S *H; + -+ S, x H,
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Domain-Specific Modeling

* Construct one HDC model for each subset
- Based on cosine similarity between H and class hypervectors:
H-¢  H Ci
170 Te:ll — Tzl T
Scaling a weight to each sample depending on how much new information is added to
class hypervectors. If H has highest cosine-similarities to C; while its true label is C;:
Ci=Ci—n-[1-6(,CHXxH
Ci—Ci+n-|1-6(H,¢c)| xH
A large 6(H, -) indicates the input data points is marginally mismatches, while a small
O6(H, -) indicates a noticeably new pattern.

5(7‘[,61) =

o« H - Normalize(C;)
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Domain Generalization (DG)

» Class-Specific Aggregation: extracting class
hypervectors from each domain-specific model

 Domain-Invariant Filter: identifying and regenerating
domain-invariant dimensions

 Model Ensemble: combining multiple domain-specific
models into a single domain-invariant model

Junyao Wang, University of California, Irvine
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DG: Class-Specific Aggregation

* For each class i: extract the class hypervector from
every domain-specific model representing class i to
form a class-specific matrix.

Domain-Specific Model (M)
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DG: Domain-Variant Filter

* For each class-specific matrix, we calculate the variance of each
dimension to measure its dispersion.

* Dimensions with very different values for the same class indicate that
they store highly differentiated patterns, and therefore are considered
domain-variant.

* We select dimensions with the highest variance and their corresponding
projection matrix with a new randomly generated vector.
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DG: Model Ensemble

* We assemble all the domain-specific models to construct a general
domain-invariant model based on the weight of each domain.

* We then ensemble domain specific models My, M5, ..., M}, by M =P; -
Ml +?2 .MZ ++?k ‘Mk.

* For each source domain A € [0, k], we calculate the proportion of the

data from domain A as P; = —2—, where JV; denotes the number of
total

sample from domain A and NV;,¢,; denotes the total number of samples.
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* Experimental Setup
— Server CPU
— Embedded CPU
— Embedded GPU

* Baselines

— CNN-based domain-generalization algorithms: Representation Self-Challenging
(RSC) [1] and AND-mask [2]

— SOTA HDC with static encoder not considering domain generalization, denoted as
BaselineHD [3]

i. Physical Dimensionality (D = 0.5k): a compressed dimensionality
designed for resource-constrained platforms

ii. Effective Dimensionality (D* = 4k): physical dimensionality + all the
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regenerated dimensions during the retraining iterations
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Evaluations (Cont.)

* Taking human activity recognition as the application use case, we evaluate
DOMINO on widely-used multi-sensor time series datasets:

- DSADS
- USC-HAD
- PAMAP2

* Please refer to our paper for detailed data preprocessing steps.

[1] Barshan, Billur, and Murat Cihan Yiiksek. "Recognizing daily and sports activities in two open source machine

learning environments using body-worn sensor units.“, The Computer Journal, 2014.

[2] Zhang, Mi, and Alexander A. Sawchuk. "USC-HAD: A daily activity dataset for ubiquitous activity recognition using

wearable sensors.", ACM conference on ubiquitous computing. 2012.

[3] Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset for activity monitoring." 2012 16th

: |l= international symposium on wearable computers. IEEE, 2012.
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Accuracy: LODO Accuracy

CIRSC ] AND-mask [[] BaselineHD (D=0.5k)
[] BaselineHD (D*=4k) [] DOMINO (D=0.5k, this work)

=100
2
 Compared to SOTA CNNs: = 2k
&
£ 75
v" 0.96% higher than RSC :td _||—| HH |—|H HHHHH
v’ 2.04% higher than AND-mask g0 _Pomain1 Domain2 Domain3 Domain4 Average
S USCHAD
* Compared to BaselineHD: g 75
v 11.70% higher than BaselineHD (D* = 4k) 3 o H w HH { H
. Igner than baseline = <
° e 45 |_||_| I_Il_l =l |_||_||_||_||_| I'Il_l |_|
v' 15.93% higher than BaselineHD (D = 0.5k) 90 Pomain 1Domain ZDimain 3D°mfin 4Domain5 Average
S PAMAP2 u e [
=75
8
5 60
‘ o (L] AL el
2'.,2(}!\‘TZFN;’-".‘TIDI\"—"EG < 45 HI_I

CONFERENCE ON
COMPUTER-AIDED

DESIGN

Domain1 Domain2 Domain3 Domain4 Average

Junyao Wang, University of California, Irvine



2023 INTERNATIONAL

é‘\
e’

Accuracy: Imbalanced

UCI Samueli

School of Engineering

raining Data

* Imbalanced data: certain domains contribute a disproportionately larger portion of the
data while other domains are represented by considerably smaller amounts

* DOMINO outperforms SOTA CNN-based DG approaches by exhibiting on average 1.18%
and 2.58% higher accuracy than RSC and AND-mask, respectively
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Efficiency
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Other Results

[ RSC [J] AND-mask [ 1 DOMINO (D=0.5k, this work|
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RSC 21%  73%  112% 204% _ 29.7%
AND-mask | 29% 87% 13.8% _ 281%  352%
1bit | 00%  00% 1.0% 3.1%  4.1%
2bits | 00%  05% 16% 48%  8.0%
4bits | 02%  10% 29% 74% 11.7%
8bits | 14%  36%  51% 128% 17.6%
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