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Multi-Sensor Time Series Data
• Rapid evolution of the Internet of Things (IoT)
• Heterogeneously connected sensors capture information over 

time, constituting muti-sensor time series data
•  Sophisticated DNNs, e.g., RNNs, have been proposed to capture 

spatial and temporal dependencies in these data
• Hyperdimensional Computing (HDC) has been introduced

 Fast convergence

 High computational efficiency

 Ultra-robustness against noise

Junyao Wang, University of California, Irvine

Too complicated for 
resource-constrained 
edge platforms!



Distribution Shift
• A fundamental issue across data-driven machine learning (ML)

 The excellent performance relies on the critical assumption that the 
training and inference data come from the same distribution.

 This assumption can be easily violated in real-world applications and can 
substantially degrade model performance.

 Examples: in healthcare, ML models can systematically fail when tested on 
patients from different hospitals or from diverse demographics. 

Junyao Wang, University of California, Irvine

 Here we define the problem:
• Suppose we have 𝑘𝑘 (𝑘𝑘 ≥ 1) source domains in training data 𝒳𝒳𝒮𝒮 

and an output space 𝒴𝒴
• our goal is to train a classification model 𝑓𝑓:  𝒳𝒳𝒮𝒮 → 𝒴𝒴 
•  𝑓𝑓 should be able to capture latent features and make 

predictions for data samples from test data/target domain 𝒳𝒳𝒯𝒯

 Challenge 
• The distributions in source domains and target domains can be 

different, 𝒫𝒫(𝒳𝒳𝒮𝒮 ,𝒴𝒴) ≠ 𝒫𝒫(𝒳𝒳𝒯𝒯 ,𝒴𝒴)

• A model trained with samples in  𝒳𝒳𝒮𝒮 may fail to adapt to 
samples from 𝒳𝒳𝒯𝒯



Challenges
• Existing HDCs are not immune to the distribution shift issue

−  The accuracy of leave-one-domain-out (LODO) cross-validation (CV) is 
notably lower than k-fold CV

− LODO CV: training a model on all the available data except for one domain 
that is left out for inference

− 𝑘𝑘-fold CV: randomly divides all data into 𝑘𝑘 subsets with 𝑘𝑘 − 1 subsets for 
training and the remaining one for inference

• Can we filter out those domain-variant dimensions?
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Our Work
• DOMINO, the first HDC-based domain generalization algorithm that 

dynamically identifying and regenerating domain-variant dimensions. 
− Time Series Encoding

− Domain Specific Modeling

− Domain Generalization

Junyao Wang, University of California, Irvine

⋯ ⋯

Cerebellum Cortex HDC

Neuron

Injury Degenerate Regenerate

Neuron Regeneration

Training 
Data

Time Series Encoding
Dynamic Representation Domains

𝓖𝓖𝟏𝟏
D

om
ai

n-
Sp

ec
ifi

c 
M

od
el

in
g

Dynamic Regeneration

Domain-Invariant 
Model

Base Vectors

⋯ ⋯ ⋯
𝓜𝓜𝟐𝟐

𝓜𝓜𝟏𝟏

C
la

ss
-S

pe
ci

fic
 

A
gg

re
ga

tio
n

D
om

ai
n-

Va
ria

nt
 

Fi
lte

r

Domain Generalization

M
od

el
 

En
se

m
bl

e

𝓜𝓜𝒌𝒌

𝓖𝓖𝟐𝟐

𝓖𝓖𝒌𝒌



Time Series Encoding
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•  HDC starts with encoding low-dimensional inputs to hypervectors, each containing 
thousands of elements. 

• Assign random hypervectors ℋ𝑚𝑚𝑚𝑚𝑚𝑚 and ℋ𝑚𝑚𝑖𝑖𝑖𝑖 to represent the maximum and minimum 
signal values, i.e., 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. 

• Vector quantization to values between 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. For instance, 

ℋ𝑡𝑡3 = ℋ𝑡𝑡1 +
𝑦𝑦𝑡𝑡3 − 𝑦𝑦𝑡𝑡1
𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡1

⋅ ℋ𝑡𝑡2 −ℋ𝑡𝑡1 ;  ℋ𝓨𝑡𝑡3 = ℋ𝓨𝑡𝑡2 +
𝑦𝑦𝓨𝑡𝑡3 − 𝑦𝑦𝓨𝑡𝑡2
𝑦𝑦𝓨𝑡𝑡1 − 𝑦𝑦𝓨𝑡𝑡2

⋅ ℋ𝓨𝑡𝑡1 −ℋ𝓨𝑡𝑡2

• Temporally sorting by rotation shifts (𝜌𝜌), e.g., ℋ = 𝜌𝜌𝜌𝜌ℋ𝑡𝑡1 ∗ 𝜌𝜌ℋ𝑡𝑡2 ∗ ℋ𝑡𝑡3
• Spatially integrating by binding, e.g., ℋ = 𝒮𝒮1 ∗ ℋ1 + ⋯+ 𝒮𝒮𝑖𝑖 ∗ ℋ𝑖𝑖

Junyao Wang, University of California, Irvine



Domain-Specific Modeling

• Separate training samples into 𝑘𝑘 subsets, 𝑘𝑘 = # of domains

• Construct one HDC model for each subset

Junyao Wang, University of California, Irvine

• Construct one HDC model for each subset
- Based on cosine similarity between ℋ and class hypervectors: 

𝛿𝛿 ℋ,𝒞𝒞𝑖𝑖 =
ℋ ⋅ 𝒞𝒞𝑖𝑖
ℋ ⋅ 𝒞𝒞𝑖𝑖

=
ℋ
ℋ

⋅
𝒞𝒞𝑖𝑖
𝒞𝒞𝑖𝑖

∝ ℋ ⋅ Normalize 𝒞𝒞𝑖𝑖

- Scaling a weight to each sample depending on how much new information is added to 
class hypervectors. If ℋ has highest cosine-similarities to 𝒞𝒞𝑖𝑖 while its true label is 𝒞𝒞𝑗𝑗:

𝒞𝒞𝑖𝑖 ← 𝒞𝒞𝑖𝑖 − 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ,𝒞𝒞𝑖𝑖 × ℋ
𝒞𝒞𝑗𝑗 ← 𝒞𝒞𝑗𝑗 + 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ,𝒞𝒞𝑗𝑗 × ℋ

A large 𝛿𝛿(ℋ, ⋅) indicates the input data points is marginally mismatches, while a small 
𝛿𝛿(ℋ, ⋅) indicates a noticeably new pattern. 
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Domain Generalization (DG)

• Class-Specific Aggregation: extracting class 
hypervectors from each domain-specific model

• Domain-Invariant Filter: identifying and regenerating 
domain-invariant dimensions

• Model Ensemble: combining multiple domain-specific 
models into a single domain-invariant model

Junyao Wang, University of California, Irvine



DG: Class-Specific Aggregation
• For each class 𝑖𝑖: extract the class hypervector from 

every domain-specific model representing class 𝑖𝑖 to 
form a class-specific matrix. 

Domain-Specific Model (𝓜𝓜)
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DG: Domain-Variant Filter
• For each class-specific matrix, we calculate the variance of each 

dimension to measure its dispersion.  
• Dimensions with very different values for the same class indicate that 

they store highly differentiated patterns, and therefore are considered 
domain-variant. 

• We select dimensions with the highest variance and their corresponding 
projection matrix with a new randomly generated vector. 

Junyao Wang, University of California, Irvine
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DG: Model Ensemble
• We assemble all the domain-specific models to construct a general 

domain-invariant model based on the weight of each domain. 

• We then ensemble domain specific models ℳ1, ℳ2, … ,ℳ𝑘𝑘 by ℳ = 𝒫𝒫1 ⋅
ℳ1 + 𝒫𝒫2 ⋅ℳ2 + ⋯+ 𝒫𝒫𝑘𝑘 ⋅ℳ𝑘𝑘.

• For each source domain 𝜆𝜆 ∈ 0, 𝑘𝑘  , we calculate the proportion of the 
data from domain 𝜆𝜆 as 𝒫𝒫𝜆𝜆 = 𝒩𝒩𝜆𝜆

𝒩𝒩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
, where 𝒩𝒩𝜆𝜆 denotes the number of 

sample from domain 𝜆𝜆 and 𝒩𝒩𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 denotes the total number of samples. 
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Evaluations
• Experimental Setup

– Server CPU

– Embedded CPU

– Embedded GPU

• Baselines

− CNN-based domain-generalization algorithms: Representation Self-Challenging 
(RSC ) [1] and AND-mask [2] 

− SOTA HDC with static encoder not considering domain generalization, denoted as
BaselineHD [3] 

i. Physical Dimensionality (𝒟𝒟 = 0.5𝑘𝑘): a compressed dimensionality 
designed for resource-constrained platforms

ii. Effective Dimensionality (𝒟𝒟∗ = 4𝑘𝑘): physical dimensionality + all the 
regenerated dimensions during the retraining iterations

[1] Huang, Zeyi, et al. "Self-challenging improves cross-domain generalization.“, ECCV 2020.
[2] Parascandolo, Giambattista, et al. "Learning explanations that are hard to vary.“, ICLR, 2020.
[3] Hernández-Cano, Alejandro, et al. "Onlinehd: Robust, efficient, and single-pass online 
learning using hyperdimensional system.“, DATE, 2021.

Junyao Wang, University of California, Irvine



Evaluations (Cont.)
• Taking human activity recognition as the application use case, we evaluate 

DOMINO on widely-used multi-sensor time series datasets:
− DSADS
− USC-HAD
− PAMAP2

* Please refer to our paper for detailed data preprocessing steps. 

[1] Barshan, Billur, and Murat Cihan Yüksek. "Recognizing daily and sports activities in two open source machine 
learning environments using body-worn sensor units.“, The Computer Journal, 2014.
[2] Zhang, Mi, and Alexander A. Sawchuk. "USC-HAD: A daily activity dataset for ubiquitous activity recognition using 
wearable sensors.", ACM conference on ubiquitous computing. 2012.
[3] Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset for activity monitoring." 2012 16th 
international symposium on wearable computers. IEEE, 2012.

Junyao Wang, University of California, Irvine



Accuracy: LODO Accuracy

•  Compared to SOTA CNNs: 

  0.96% higher than RSC

 2.04% higher than AND-mask

• Compared to BaselineHD: 

  11.70% higher than BaselineHD 𝒟𝒟∗ = 4𝑘𝑘

  15.93% higher than BaselineHD 𝒟𝒟 = 0.5𝑘𝑘

BaselineHD (D*=4k) DOMINO (D=0.5k, this work)
RSC AND-mask BaselineHD (D=0.5k)
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Accuracy: Imbalanced Training Data
• Imbalanced data: certain domains contribute a disproportionately larger portion of the 

data while other domains are represented by considerably smaller amounts

• DOMINO outperforms SOTA CNN-based DG approaches by exhibiting on average 1.18% 
and 2.58% higher accuracy than RSC and AND-mask, respectively

RSC AND-mask DOMINO (D=0.5k, this work)BaselineHD (D*=4k)
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Efficiency

1

10

100

1000

Raspberry PiJetson Nano

En
er

gy
 C

on
su

m
pt

io
n 

(J
)

1

10

100

Raspberry Pi Jetson Nano

In
fe

re
nc

e 
La

te
nc

y 
(s

)

(b) Comparing Efficiency on Embedded Platforms
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(a) Comparing Efficiency on Server CPU

RSC AND-mask DOMINO (D=0.5k, ours)BaselineHD (D*=4k)

On Server CPU, DOMINO exhibits:
•  16.34× faster training than RSC
• 14.17× faster training than AND-mask
• 2.89 × faster inference than RSC
• 1.97 × faster inference than AND-mask

On embedded devices: 
• Raspberry Pi: 

 19.79 × faster than RSC
 15.31× faster than AND-mask

• Jetson Nano
 58.44 × faster than RSC
 10.49 × faster than AND-mask

Junyao Wang, University of California, Irvine
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Thank You For Your Attention. 

DOMINO: Domain-Invariant 
Hyperdimensional Classification for 

Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque
University of California, Irvine
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