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Multi-Sensor Time Series Data
• Rapid evolution of the Internet of Things (IoT)
• Heterogeneously connected sensors capture information over 

time, constituting muti-sensor time series data
•  Sophisticated DNNs, e.g., RNNs, have been proposed to capture 

spatial and temporal dependencies in these data
• Hyperdimensional Computing (HDC) has been introduced

 Fast convergence

 High computational efficiency

 Ultra-robustness against noise

Junyao Wang, University of California, Irvine

Too complicated for 
resource-constrained 
edge platforms!



Distribution Shift
• A fundamental issue across data-driven machine learning (ML)

 The excellent performance relies on the critical assumption that the 
training and inference data come from the same distribution.

 This assumption can be easily violated in real-world applications and can 
substantially degrade model performance.

 Examples: in healthcare, ML models can systematically fail when tested on 
patients from different hospitals or from diverse demographics. 

Junyao Wang, University of California, Irvine

 Here we define the problem:
• Suppose we have 𝑘𝑘 (𝑘𝑘 ≥ 1) source domains in training data 𝒳𝒳𝒮𝒮 

and an output space 𝒴𝒴
• our goal is to train a classification model 𝑓𝑓:  𝒳𝒳𝒮𝒮 → 𝒴𝒴 
•  𝑓𝑓 should be able to capture latent features and make 

predictions for data samples from test data/target domain 𝒳𝒳𝒯𝒯

 Challenge 
• The distributions in source domains and target domains can be 

different, 𝒫𝒫(𝒳𝒳𝒮𝒮 ,𝒴𝒴) ≠ 𝒫𝒫(𝒳𝒳𝒯𝒯 ,𝒴𝒴)

• A model trained with samples in  𝒳𝒳𝒮𝒮 may fail to adapt to 
samples from 𝒳𝒳𝒯𝒯



Challenges
• Existing HDCs are not immune to the distribution shift issue

−  The accuracy of leave-one-domain-out (LODO) cross-validation (CV) is 
notably lower than k-fold CV

− LODO CV: training a model on all the available data except for one domain 
that is left out for inference

− 𝑘𝑘-fold CV: randomly divides all data into 𝑘𝑘 subsets with 𝑘𝑘 − 1 subsets for 
training and the remaining one for inference

• Can we filter out those domain-variant dimensions?
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Our Work
• DOMINO, the first HDC-based domain generalization algorithm that 

dynamically identifying and regenerating domain-variant dimensions. 
− Time Series Encoding

− Domain Specific Modeling

− Domain Generalization

Junyao Wang, University of California, Irvine
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Time Series Encoding

Sampling Windows Vector Quantization Temporally Sorted Spatially Integrated
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•  HDC starts with encoding low-dimensional inputs to hypervectors, each containing 
thousands of elements. 

• Assign random hypervectors ℋ𝑚𝑚𝑚𝑚𝑚𝑚 and ℋ𝑚𝑚𝑖𝑖𝑖𝑖 to represent the maximum and minimum 
signal values, i.e., 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. 

• Vector quantization to values between 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. For instance, 

ℋ𝑡𝑡3 = ℋ𝑡𝑡1 +
𝑦𝑦𝑡𝑡3 − 𝑦𝑦𝑡𝑡1
𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡1

⋅ ℋ𝑡𝑡2 −ℋ𝑡𝑡1 ;  ℋ′𝑡𝑡3 = ℋ′𝑡𝑡2 +
𝑦𝑦′𝑡𝑡3 − 𝑦𝑦′𝑡𝑡2
𝑦𝑦′𝑡𝑡1 − 𝑦𝑦′𝑡𝑡2

⋅ ℋ′𝑡𝑡1 −ℋ′𝑡𝑡2

• Temporally sorting by rotation shifts (𝜌𝜌), e.g., ℋ = 𝜌𝜌𝜌𝜌ℋ𝑡𝑡1 ∗ 𝜌𝜌ℋ𝑡𝑡2 ∗ ℋ𝑡𝑡3
• Spatially integrating by binding, e.g., ℋ = 𝒮𝒮1 ∗ ℋ1 + ⋯+ 𝒮𝒮𝑛𝑛 ∗ ℋ𝑛𝑛

Junyao Wang, University of California, Irvine



Domain-Specific Modeling

• Separate training samples into 𝑘𝑘 subsets, 𝑘𝑘 = # of domains

• Construct one HDC model for each subset

Junyao Wang, University of California, Irvine

• Construct one HDC model for each subset
- Based on cosine similarity between ℋ and class hypervectors: 

𝛿𝛿 ℋ,𝒞𝒞𝑖𝑖 =
ℋ ⋅ 𝒞𝒞𝑖𝑖
ℋ ⋅ 𝒞𝒞𝑖𝑖

=
ℋ
ℋ

⋅
𝒞𝒞𝑖𝑖
𝒞𝒞𝑖𝑖

∝ ℋ ⋅ Normalize 𝒞𝒞𝑖𝑖

- Scaling a weight to each sample depending on how much new information is added to 
class hypervectors. If ℋ has highest cosine-similarities to 𝒞𝒞𝑖𝑖 while its true label is 𝒞𝒞𝑗𝑗:

𝒞𝒞𝑖𝑖 ← 𝒞𝒞𝑖𝑖 − 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ,𝒞𝒞𝑖𝑖 × ℋ
𝒞𝒞𝑗𝑗 ← 𝒞𝒞𝑗𝑗 + 𝜂𝜂 ⋅ 1 − 𝛿𝛿 ℋ,𝒞𝒞𝑗𝑗 × ℋ

A large 𝛿𝛿(ℋ, ⋅) indicates the input data points is marginally mismatches, while a small 
𝛿𝛿(ℋ, ⋅) indicates a noticeably new pattern. 
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Domain Generalization (DG)

• Class-Specific Aggregation: extracting class 
hypervectors from each domain-specific model

• Domain-Invariant Filter: identifying and regenerating 
domain-invariant dimensions

• Model Ensemble: combining multiple domain-specific 
models into a single domain-invariant model

Junyao Wang, University of California, Irvine



DG: Class-Specific Aggregation
• For each class 𝑖𝑖: extract the class hypervector from 

every domain-specific model representing class 𝑖𝑖 to 
form a class-specific matrix. 

Domain-Specific Model (𝓜𝓜)
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DG: Domain-Variant Filter
• For each class-specific matrix, we calculate the variance of each 

dimension to measure its dispersion.  
• Dimensions with very different values for the same class indicate that 

they store highly differentiated patterns, and therefore are considered 
domain-variant. 

• We select dimensions with the highest variance and their corresponding 
projection matrix with a new randomly generated vector. 

Junyao Wang, University of California, Irvine
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DG: Model Ensemble
• We assemble all the domain-specific models to construct a general 

domain-invariant model based on the weight of each domain. 

• We then ensemble domain specific models ℳ1, ℳ2, … ,ℳ𝑘𝑘 by ℳ = 𝒫𝒫1 ⋅
ℳ1 + 𝒫𝒫2 ⋅ℳ2 + ⋯+ 𝒫𝒫𝑘𝑘 ⋅ℳ𝑘𝑘.

• For each source domain 𝜆𝜆 ∈ 0, 𝑘𝑘  , we calculate the proportion of the 
data from domain 𝜆𝜆 as 𝒫𝒫𝜆𝜆 = 𝒩𝒩𝜆𝜆

𝒩𝒩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
, where 𝒩𝒩𝜆𝜆 denotes the number of 

sample from domain 𝜆𝜆 and 𝒩𝒩𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denotes the total number of samples. 
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Evaluations
• Experimental Setup

– Server CPU

– Embedded CPU

– Embedded GPU

• Baselines

− CNN-based domain-generalization algorithms: Representation Self-Challenging 
(RSC ) [1] and AND-mask [2] 

− SOTA HDC with static encoder not considering domain generalization, denoted as
BaselineHD [3] 

i. Physical Dimensionality (𝒟𝒟 = 0.5𝑘𝑘): a compressed dimensionality 
designed for resource-constrained platforms

ii. Effective Dimensionality (𝒟𝒟∗ = 4𝑘𝑘): physical dimensionality + all the 
regenerated dimensions during the retraining iterations

[1] Huang, Zeyi, et al. "Self-challenging improves cross-domain generalization.“, ECCV 2020.
[2] Parascandolo, Giambattista, et al. "Learning explanations that are hard to vary.“, ICLR, 2020.
[3] Hernández-Cano, Alejandro, et al. "Onlinehd: Robust, efficient, and single-pass online 
learning using hyperdimensional system.“, DATE, 2021.

Junyao Wang, University of California, Irvine



Evaluations (Cont.)
• Taking human activity recognition as the application use case, we evaluate 

DOMINO on widely-used multi-sensor time series datasets:
− DSADS
− USC-HAD
− PAMAP2

* Please refer to our paper for detailed data preprocessing steps. 

[1] Barshan, Billur, and Murat Cihan Yüksek. "Recognizing daily and sports activities in two open source machine 
learning environments using body-worn sensor units.“, The Computer Journal, 2014.
[2] Zhang, Mi, and Alexander A. Sawchuk. "USC-HAD: A daily activity dataset for ubiquitous activity recognition using 
wearable sensors.", ACM conference on ubiquitous computing. 2012.
[3] Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset for activity monitoring." 2012 16th 
international symposium on wearable computers. IEEE, 2012.

Junyao Wang, University of California, Irvine



Accuracy: LODO Accuracy

•  Compared to SOTA CNNs: 

  0.96% higher than RSC

 2.04% higher than AND-mask

• Compared to BaselineHD: 

  11.70% higher than BaselineHD 𝒟𝒟∗ = 4𝑘𝑘

  15.93% higher than BaselineHD 𝒟𝒟 = 0.5𝑘𝑘

BaselineHD (D*=4k) DOMINO (D=0.5k, this work)
RSC AND-mask BaselineHD (D=0.5k)
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Accuracy: Imbalanced Training Data
• Imbalanced data: certain domains contribute a disproportionately larger portion of the 

data while other domains are represented by considerably smaller amounts

• DOMINO outperforms SOTA CNN-based DG approaches by exhibiting on average 1.18% 
and 2.58% higher accuracy than RSC and AND-mask, respectively

RSC AND-mask DOMINO (D=0.5k, this work)BaselineHD (D*=4k)

Average
30

45

60

75

Setting 1 Setting 2 Setting 3 Setting 4

Ac
cu

ra
cy

 (%
)

Junyao Wang, University of California, Irvine



Efficiency
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RSC AND-mask DOMINO (D=0.5k, ours)BaselineHD (D*=4k)

On Server CPU, DOMINO exhibits:
•  16.34× faster training than RSC
• 14.17× faster training than AND-mask
• 2.89 × faster inference than RSC
• 1.97 × faster inference than AND-mask

On embedded devices: 
• Raspberry Pi: 

 19.79 × faster than RSC
 15.31× faster than AND-mask

• Jetson Nano
 58.44 × faster than RSC
 10.49 × faster than AND-mask

Junyao Wang, University of California, Irvine
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Thank You For Your Attention. 

DOMINO: Domain-Invariant 
Hyperdimensional Classification for 

Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque
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