

# **DOMINO: Domain-Invariant Hyperdimensional Classification** for Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque junyaow4@uci.edu, University of California, Irvine, United States

### Motivation

#### Multi-Sensor Time Series Data:

With the emergence of IoT, heterogeneously connected sensors capture information over time, constituting muti-sensor time series data

**Problem I:** Sophisticated DNNs, e.g., RNNs have been proposed to capture spatial and temporal dependencies in these data. (Too complicated for edge devices!)

**Problem II:** Distribution Shift, a fundamental problem across data-driven ML

#### **Distribution Shift**:

The excellent relies heavily on the critical assumption that the training and inference data are from the same distribution. **Training Data** 

Ŏ

Can be easily violated in real-world scenarios and can substantially degrade model performance in many embedded ML applications.



## **DOMINO: HDC-Based Domain Generalization**



S \* H

 $\mathcal{S}' * \mathcal{H}'$ 

Features

### **HDC Introduction**

Cerebellum

Sparse high dimensional representations

#### Robustness against noise

Works well with multiple noisy input and computation

#### Efficient

The brain works at as low as 20W of energy

**High-dimensional** Basic elements are hypervectors. Holographic Encoding Info of every feature is on all the dimensions HDC Algebra Simple and fast,

very efficient computation.

- A powerful learning solution for today's edge platforms
  - ✓ Fast convergence, high computational efficiency, ultra-robustness against noise ✓ High-quality results comparable to SOTA DNNs
- Incorporates learning capability along with storing/loading information
  - $\checkmark$  Unique advantages in dealing with time-series data

### Challenges

- **Binding (+):** Element-wise addition  $\mathcal{H}_{bundle} = \mathcal{H}_1 + \mathcal{H}_2$  $\delta(\mathcal{H}_{bundle}, \mathcal{H}_1) \gg 0, \delta(\mathcal{H}_{bundle}, \mathcal{H}_3) \approx 0$ **Bundling:** Element-wise multiplication  $\mathcal{H}_{bind} = \mathcal{H}_1 * \mathcal{H}_2$  $\delta(\mathcal{H}_{bind}, \mathcal{H}_1) \approx 0, \delta(\mathcal{H}_{bind}, \mathcal{H}_2) \approx 0$ • **Reasoning:** measuring the similarity of hypervectors, e.g., cosine similarity is calculated as  $\delta(\mathcal{H}_1, \mathcal{H}_2) = \frac{\mathcal{H}_1 \cdot \mathcal{H}_2}{\|\mathcal{H}_1\| \cdot \|\mathcal{H}_2\|}$
- $\square \mathcal{H}_{t_1} \Leftrightarrow \square \mathcal{P} \mathcal{H}_{t_1} \Leftrightarrow$  $\mathcal{H}_{t_3}$  $\square \square \square \mathcal{H}_{t_3}$  $T_{t_1} t_2 t_3 T$  $|y'_{t_1}|$  Sensor II  $y'_{t_2}$  $\square \square \mathcal{H}_{t_{3}'}$  $\mathcal{H}'_{t_3}$  $T t_1 t_2 t_3$

#### **N-gram Encoding:**

- Assign random hypervectors  $\mathcal{H}_{max}$  and  $\mathcal{H}_{min}$  to represent the maximum and minimum signal values, i.e.,  $y_{max}$  and  $y_{min}$ . • Vector quantization to values between  $y_{max}$  and  $y_{min}$ . For instance,
  - $\mathcal{H}_{t_3} = \mathcal{H}_{t_1} + \frac{y_{t_3} y_{t_1}}{y_{t_2} y_{t_1}} \cdot (\mathcal{H}_{t_2} \mathcal{H}_{t_1});$

$$\mathcal{H'}_{t_3} = \mathcal{H'}_{t_2} + \frac{y'_{t_3} - y'_{t_2}}{y'_{t_1} - y'_{t_2}} \cdot \left(\mathcal{H'}_{t_1} - \mathcal{H'}_{t_2}\right)$$

Temporally sorting by rotation shifts ( $\rho$ ), e.g.,  $\mathcal{H} = \rho \rho \mathcal{H}_{t_1} * \rho \mathcal{H}_{t_2} * \mathcal{H}_{t_3}$ Spatially integrating by binding, e.g.,  $\mathcal{H} = S_1 * \mathcal{H}_1 + \dots + S_n * \mathcal{H}_n$ 

#### **Domain Generalization (DG)**

#### Algorithm 2 Domain Generalization **Input:** k domain-specific models $\{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k\}$ each with size $n \times \mathcal{D}$ , regeneration rate $\mathcal{R}$ . **Output:** Domain-variant dimensions $\mathcal{U}$ to drop. 1: Initialize *n* empty matrices $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_n$ , each with size $k \times \mathcal{D}$ .

- 2: for each  $\mathcal{T}_{\gamma} \in \{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_n\}$  do for each  $\mathcal{M}_{\lambda} \in \{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k\}$  do
- $\mathcal{T}_{\gamma}[\lambda,:] = \mathcal{M}_{\lambda}[\gamma,:] \triangleright$  Form *n* class-specific matrices  $\sigma_{\gamma} = Variance(\mathcal{T}_{\gamma}, columnwise)$  $\triangleright$  dim $(\sigma_{\gamma}) = 1 \times \mathcal{D}$ 6:  $\mathcal{V} = \sum_{i=1}^{n} \sigma_i$
- 7:  $\mathcal{U} = \operatorname{argsort}(\mathcal{V})[\lfloor (1 \mathcal{R}) \cdot \mathcal{D} \rfloor : \mathcal{D}] \quad \triangleright \mathcal{R} \text{ of dimensions with}$

label of each data sample  $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_N$ , learning rate  $\eta$ . **Output:** k domain-specific models  $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_k$  after one training iteration. for each  $\lambda \in [1, k]$  do Initialize a domain-specific model  $\mathcal{M}_{\lambda}$  consisting of one class hypervectors for each class  $\mathcal{M}_{\lambda} = \{\mathcal{C}_{\lambda}^{1}, \mathcal{C}_{\lambda}^{2}, \dots, \mathcal{C}_{\lambda}^{n}\}$ for each  $\mathcal{H}_i \in \{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_N\}$  do if  $domain(\mathcal{H}_i) = \mathcal{G}_{\lambda}$  then  $\mathcal{C}_{\max} = \arg \max_{\mathcal{C}_{\lambda}^{t}} \left\{ \delta(\mathcal{H}_{i}, \mathcal{C}_{\lambda}^{1}), \dots, \delta(\mathcal{H}_{i}, \mathcal{C}_{\lambda}^{n}) \right\}$ if  $\mathcal{L}_i = \mathcal{C}_{\max}$  then continue se if  $\mathcal{L}_i \neq \mathcal{C}_{\max} \wedge \mathcal{L}_i = \mathcal{C}_i^j$  then  $\mathcal{C}_{\max} \leftarrow \mathcal{C}_{\max} - \eta \cdot [1 - \hat{\delta}(\mathcal{H}_i, \mathcal{C}_{\max})] imes \mathcal{H}_i$  $\mathcal{C}^j_\lambda \leftarrow \mathcal{C}^j_\lambda + \eta \cdot [1 - \delta(\mathcal{H}_i, \mathcal{C}^j_\lambda)] \times \mathcal{H}_i$  $\mathcal{M}_{\lambda} = Normalize(\mathcal{M}_{\lambda})$ 12: return  $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_k$ 

Our algorithm provides a higher chance for noncommon patterns to be properly included

$$\delta(\mathcal{H}, \mathcal{C}^{t}_{\lambda}) = \frac{\mathcal{H} \cdot \mathcal{C}^{t}_{\lambda}}{\|\mathcal{H}\| \cdot \|\mathcal{C}^{t}_{\lambda}\|} = \frac{\mathcal{H}}{\|\mathcal{H}\|} \cdot \frac{\mathcal{C}^{t}_{\lambda}}{\|\mathcal{C}^{t}_{\lambda}\|}$$

- A large  $\delta(\mathcal{H}, \cdot)$  indicates the input data points is marginally mismatches
- A small  $\delta(\mathcal{H}, \cdot)$  indicates a noticeably new pattern

Dimensions with large variance indicate, for the same class, these dimensions store very different information, and are hence considered domain-variant.

- > We sum up the variance vector of each class-specific matrix to obtain a vector representing the overall relevance of dimension to domains.
- $\succ$  We select the top  $\mathcal{R}$  portion of dimensions with the highest variance and **regenerate** each of them with a



Existing HDCs are not immune to the distribution shift issue



The accuracy of leave-one-domain-out (LODO) cross-validation (CV) is considerably lower than the standard k-fold CV. A very limited generalization capability of existing models.





#### **Conclusion:**

#### We propose DOMINO, an HDC-based domain generalization algorithm that provides significantly higher efficiency and better performance than SOTA DNN-based techniques. Our solution provides a

resource-efficient and hardware-friendly solution, especially for today's edge devices, to mitigate the distribution shift challenge.



§<sup>100</sup>

75

50

90

75

60

90

75

60

(%)

с

(%)

lC V