
DOMINO: Domain-Invariant Hyperdimensional Classification
for Multi-Sensor Time Series Data

Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque
junyaow4@uci.edu, University of California, Irvine, United States

University of California, Irvine, United States

HDC Introduction
• Binding (+): Element-wise addition

ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 + ℋ2

𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≫ 0,𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ3 ≈ 0
• Bundling: Element-wise multiplication

ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 ∗ℋ2

𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≈ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ2 ≈ 0
• Reasoning: measuring the similarity of

hypervectors, e.g., cosine similarity is

calculated as 𝛿𝛿 ℋ1,ℋ2 = ℋ1�ℋ2
ℋ1 ⋅ ℋ2

High-dimensional

Holographic
Encoding

HDC Algebra
Simple and fast,

very efficient computation.

Efficient
The brain works at as low
as 20W of energy

Cerebellum
Sparse high dimensional
representations

Robustness
against noise
Works well with multiple
noisy input and computation

Info of every feature is
on all the dimensions

Basic elements are
hypervectors.

DOMINO: HDC-Based Domain Generalization

、

Motivation

Distribution Shift:
The excellent relies heavily on the critical assumption that the training and inference data are from
the same distribution.

Can be easily violated in real-world
scenarios and can substantially degrade
model performance in many embedded
ML applications.

D
en

si
ty

Features

Training Data
Inference Data

Multi-Sensor Time Series Data:
With the emergence of IoT, heterogeneously connected sensors capture information over time,
constituting muti-sensor time series data
Problem I: Sophisticated DNNs, e.g., RNNs have been proposed to capture spatial and temporal
dependencies in these data. (Too complicated for edge devices!)
Problem II: Distribution Shift, a fundamental problem across data-driven ML

Challenges
Existing HDCs are not immune to the distribution shift issue

0

30

60

90

0.5k 1k 2k 4k 6k

A
cc

ur
ac

y
(%

)

Dimensions

0

30

60

90

10 20 30 40 50

A
cc

ur
ac

y
(%

)

Iterations

LODO
Standard k-fold

The accuracy of leave-one-domain-out
(LODO) cross-validation (CV) is considerably
lower than the standard k-fold CV.
A very limited generalization capability of
existing models.

• A powerful learning solution for today’s edge platforms
Fast convergence, high computational efficiency, ultra-robustness against noise
 High-quality results comparable to SOTA DNNs

• Incorporates learning capability along with storing/loading information
 Unique advantages in dealing with time-series data

Domains

𝓖𝓖𝟏𝟏

D
om

ai
n-

Sp
ec

ifi
c

M
od

el
in

g

Dynamic Regeneration

Base Vectors

⋯ ⋯
𝓜𝓜𝟐𝟐

𝓜𝓜𝟏𝟏

C
la

ss
-S

pe
ci

fic

A
gg

re
ga

tio
n

D
om

ai
n-

Va
ria

nt

Fi
lte

r

Domain Generalization

M
od

el

En
se

m
bl

e

𝓜𝓜𝒌𝒌

𝓖𝓖𝟐𝟐

Time Series Encoding
 Dynamic Representation

⋯
𝓖𝓖𝒌𝒌

⋯

D
om

ai
n-

In
va

ria
nt

M

od
elTraining

Data

Sampling Windows Vector Quantization Temporally Sorted Spatially Integrated

min
𝓗𝓗𝒕𝒕𝟏𝟏

𝓗𝓗𝒕𝒕𝟐𝟐

𝓗𝓗𝒕𝒕𝟑𝟑

T

Sensor I

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑

𝓨𝓨𝒕𝒕𝟐𝟐
𝓨𝓨𝒕𝒕𝟑𝟑
𝓨𝓨𝒕𝒕𝟏𝟏

T

Sensor II

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑

𝓨𝓨𝓨𝒕𝒕𝟏𝟏
𝓨𝓨𝓨𝒕𝒕𝟑𝟑
𝓨𝓨𝓨𝒕𝒕𝟐𝟐

𝓗𝓗𝓗𝒕𝒕𝟏𝟏

𝓗𝓗𝓗𝒕𝒕𝟑𝟑

𝓗𝓗𝓗𝒕𝒕𝟐𝟐

𝝆𝝆𝝆𝝆𝝆𝝆𝒕𝒕𝟏𝟏

𝝆𝝆𝝆𝝆𝓗𝓗𝒕𝒕𝟐𝟐

𝓗𝓗𝒕𝒕𝟑𝟑

𝝆𝝆𝝆𝝆𝓗𝓗𝒕𝒕𝟏𝟏
′

𝓗𝓗𝒕𝒕𝟑𝟑
′

𝝆𝝆𝝆𝝆𝓗𝓗𝒕𝒕𝟐𝟐
′

max

min
max

+

∗ 𝓗𝓗

∗𝓢𝓢𝓢 𝓗𝓗𝓗

𝓢𝓢

Multi-Sensor Time Series Encoding

N-gram Encoding:
• Assign random hypervectors ℋ𝑚𝑚𝑚𝑚𝑚𝑚 and ℋ𝑚𝑚𝑖𝑖𝑖𝑖 to represent the

maximum and minimum signal values, i.e., 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖.
• Vector quantization to values between 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. For instance,

ℋ𝑡𝑡3 = ℋ𝑡𝑡1 +
𝑦𝑦𝑡𝑡3 − 𝑦𝑦𝑡𝑡1
𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡1

⋅ ℋ𝑡𝑡2 −ℋ𝑡𝑡1 ;

ℋ′𝑡𝑡3 = ℋ′𝑡𝑡2 +
𝑦𝑦′𝑡𝑡3 − 𝑦𝑦′𝑡𝑡2
𝑦𝑦′𝑡𝑡1 − 𝑦𝑦′𝑡𝑡2

⋅ ℋ′𝑡𝑡1 −ℋ′𝑡𝑡2

• Temporally sorting by rotation shifts (𝜌𝜌), e.g., ℋ = 𝜌𝜌𝜌𝜌ℋ𝑡𝑡1 ∗ 𝜌𝜌ℋ𝑡𝑡2 ∗ ℋ𝑡𝑡3
• Spatially integrating by binding, e.g., ℋ = 𝒮𝒮1 ∗ ℋ1 + ⋯+ 𝒮𝒮𝑛𝑛 ∗ ℋ𝑛𝑛

Domain-Specific Modeling

Our algorithm provides a higher chance for non-
common patterns to be properly included

𝛿𝛿 ℋ,𝒞𝒞𝜆𝜆
𝑡𝑡 =

ℋ ⋅ 𝒞𝒞𝜆𝜆
𝑡𝑡

ℋ ⋅ 𝒞𝒞𝜆𝜆
𝑡𝑡 =

ℋ
ℋ

⋅
𝒞𝒞𝜆𝜆
𝑡𝑡

𝒞𝒞𝜆𝜆
𝑡𝑡

• A large 𝛿𝛿(ℋ,⋅) indicates the input data
points is marginally mismatches

• A small 𝛿𝛿(ℋ,⋅) indicates a noticeably
new pattern

Domain Generalization (DG)  Dimensions with large variance indicate, for the same
class, these dimensions store very different
information, and are hence considered domain-variant.

 We sum up the variance vector of each class-specific
matrix to obtain a vector representing the overall
relevance of dimension to domains.

 We select the top ℛ portion of dimensions with the
highest variance and regenerate each of them with a
new randomly generated vector.

M
od

el

En
se

m
bl

e

Evaluations

DSADS

BaselineHD (D*=4k) DOMINO (D=0.5k, this work)
RSC AND-mask BaselineHD (D=0.5k)

50

75

100

Domain 1 Domain 2 Domain 3 Domain 4

Ac
cu

ra
cy

 (%
)

Average

45

60

75

90

Domain 1 Domain 2 Domain 3 Domain 4

Ac
cu

ra
cy

 (%
)

Average

45

60

75

90

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5

Ac
cu

ra
cy

 (%
)

Average

PAMAP2

USCHAD

Average
30

45

60

75

Setting 1 Setting 2 Setting 3 Setting 4

A
cc

ur
ac

y
(%

)

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y
(%

)

Percentage of Training Data

DOMINO (ours)

RSC
AND-mask

When using only 10%
of the training data,
DOMINO demonstrates
5.81% higher accuracy
than AND-mask and
4.90% high accuracy
than RSC.

DOMINO
outperforms SOTA
CNN-based DG
approaches by
exhibiting on average
1.18% and 2.58%
higher accuracy than
RSC and AND-mask.

LODO Accuracy:
0.96% higher than RSC, 2.04% higher than AND-mask
11.70% higher than BaselineHD 𝒟𝒟∗ = 4𝑘𝑘 , 15.93%
higher than BaselineHD 𝒟𝒟 = 0.5𝑘𝑘

10

100

1000

10000

DASAD UCSHAD PAMAP2

Tr
ai

ni
ng

 T
im

e
(s

)

0.1

1

10

DASAD UCSHAD PAMAP2In
fe

re
nc

e
La

te
nc

y
(s

)
(a) Comparing Efficiency on Server CPU

RSC AND-mask DOMINO (D=0.5k, ours)

1

10

100

1000

Raspberry Pi Jetson Nano

En
er

gy
 C

on
su

m
pt

io
n

(J
)

(b) Comparing Efficiency on Embedded Platforms

1

10

100

Raspberry Pi Jetson Nano

In
fe

re
nc

e
La

te
nc

y
(s

)

BaselineHD (D*=4k)

On Server CPU, DOMINO exhibits:
• 16.34× faster training than RSC, 14.17× faster training than AND-mask
• 2.89 × faster inference than RSC, 1.97 × faster inference than AND-mask
On embedded devices:
• Raspberry Pi:
19.79 × faster than RSC, 15.31× faster than AND-mask

• Jetson Nano
58.44 × faster than RSC, 10.49 × faster than AND-mask

Evaluations

B

A
C

Conclusion:
We propose DOMINO, an HDC-based domain generalization algorithm that provides significantly higher efficiency and better performance than SOTA DNN-based techniques. Our solution provides a
resource-efficient and hardware-friendly solution, especially for today’s edge devices, to mitigate the distribution shift challenge.

	Slide Number 1

