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HDC Introduction
• Binding (+): Element-wise addition

ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 + ℋ2

𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≫ 0,𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ3 ≈ 0
• Bundling: Element-wise multiplication

ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 ∗ℋ2

𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≈ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ2 ≈ 0
• Reasoning: measuring the similarity of 

hypervectors,  e.g., cosine similarity is 

calculated as 𝛿𝛿 ℋ1,ℋ2 = ℋ1�ℋ2
ℋ1 ⋅ ℋ2

High-dimensional

Holographic 
Encoding

HDC Algebra
Simple and fast, 

very efficient computation.

Efficient
The brain works at as low 
as 20W of energy

Cerebellum
Sparse high dimensional 
representations 

Robustness 
against noise
Works well with multiple 
noisy input and computation

Info of every feature is 
on all the dimensions

Basic elements are 
hypervectors.

DOMINO: HDC-Based Domain Generalization

、

Motivation

Distribution Shift: 
The excellent relies heavily on the critical assumption that the training and inference data are from 
the same distribution.

Can be easily violated in real-world 
scenarios and can substantially degrade 
model performance in many embedded 
ML applications. 
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Features

Training Data
Inference Data

Multi-Sensor Time Series Data:
With the emergence of IoT, heterogeneously connected sensors capture information over time, 
constituting muti-sensor time series data
Problem I: Sophisticated DNNs, e.g., RNNs have been proposed to capture spatial and temporal 
dependencies in these data. (Too complicated for edge devices!)
Problem II: Distribution Shift, a fundamental problem across data-driven ML

Challenges
Existing HDCs are not immune to the distribution shift issue
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Dimensions
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Iterations

LODO
Standard k-fold

The accuracy of leave-one-domain-out 
(LODO) cross-validation (CV) is considerably 
lower than the standard k-fold CV. 
A very limited generalization capability of 
existing models.

• A powerful learning solution for today’s edge platforms
Fast convergence, high computational efficiency, ultra-robustness against noise
 High-quality results comparable to SOTA DNNs

• Incorporates learning capability along with storing/loading information
 Unique advantages in dealing with time-series data

Domains
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Dynamic Regeneration

Base Vectors
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Time Series Encoding
 Dynamic Representation
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Data

Sampling Windows Vector Quantization Temporally Sorted Spatially Integrated
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𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑

𝓨𝓨𝒕𝒕𝟐𝟐
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𝓨𝓨𝒕𝒕𝟏𝟏
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Sensor II

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑

𝓨𝓨𝓨𝒕𝒕𝟏𝟏
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′
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Multi-Sensor Time Series Encoding

N-gram Encoding:
•  Assign random hypervectors ℋ𝑚𝑚𝑚𝑚𝑚𝑚 and ℋ𝑚𝑚𝑖𝑖𝑖𝑖 to represent the 

maximum and minimum signal values, i.e., 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. 
• Vector quantization to values between 𝓎𝓎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝓎𝓎𝑚𝑚𝑖𝑖𝑖𝑖. For instance, 

ℋ𝑡𝑡3 = ℋ𝑡𝑡1 +
𝑦𝑦𝑡𝑡3 − 𝑦𝑦𝑡𝑡1
𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡1

⋅ ℋ𝑡𝑡2 −ℋ𝑡𝑡1 ; 

ℋ′𝑡𝑡3 = ℋ′𝑡𝑡2 +
𝑦𝑦′𝑡𝑡3 − 𝑦𝑦′𝑡𝑡2
𝑦𝑦′𝑡𝑡1 − 𝑦𝑦′𝑡𝑡2

⋅ ℋ′𝑡𝑡1 −ℋ′𝑡𝑡2

• Temporally sorting by rotation shifts (𝜌𝜌), e.g., ℋ = 𝜌𝜌𝜌𝜌ℋ𝑡𝑡1 ∗ 𝜌𝜌ℋ𝑡𝑡2 ∗ ℋ𝑡𝑡3
• Spatially integrating by binding, e.g., ℋ = 𝒮𝒮1 ∗ ℋ1 + ⋯+ 𝒮𝒮𝑛𝑛 ∗ ℋ𝑛𝑛

Domain-Specific Modeling

Our algorithm provides a higher chance for non-
common patterns to be properly included

𝛿𝛿 ℋ,𝒞𝒞𝜆𝜆
𝑡𝑡 =

ℋ ⋅ 𝒞𝒞𝜆𝜆
𝑡𝑡

ℋ ⋅ 𝒞𝒞𝜆𝜆
𝑡𝑡 =

ℋ
ℋ

⋅
𝒞𝒞𝜆𝜆
𝑡𝑡

𝒞𝒞𝜆𝜆
𝑡𝑡

•  A large 𝛿𝛿(ℋ,⋅) indicates the input data 
points is marginally mismatches

• A small 𝛿𝛿(ℋ,⋅) indicates a noticeably 
new pattern

Domain Generalization (DG)  Dimensions with large variance indicate, for the same 
class, these dimensions store very different 
information, and are hence considered domain-variant.

 We sum up the variance vector of each class-specific 
matrix to obtain a vector representing the overall 
relevance of dimension to domains. 

 We select the top ℛ portion of dimensions with the 
highest variance and regenerate each of them with a 
new randomly generated vector. 
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Evaluations

DSADS

BaselineHD (D*=4k) DOMINO (D=0.5k, this work)
RSC AND-mask BaselineHD (D=0.5k)
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Percentage of Training Data

DOMINO (ours)

RSC
AND-mask

When using only 10% 
of the training data, 
DOMINO demonstrates 
5.81% higher accuracy 
than AND-mask and 
4.90% high accuracy 
than RSC.

DOMINO 
outperforms SOTA 
CNN-based DG 
approaches by 
exhibiting on average 
1.18% and 2.58% 
higher accuracy than 
RSC and AND-mask.

LODO Accuracy: 
0.96% higher than RSC, 2.04% higher than AND-mask
11.70% higher than BaselineHD 𝒟𝒟∗ = 4𝑘𝑘 , 15.93% 
higher than BaselineHD 𝒟𝒟 = 0.5𝑘𝑘
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(a) Comparing Efficiency on Server CPU

RSC AND-mask DOMINO (D=0.5k, ours)
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(b) Comparing Efficiency on Embedded Platforms
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BaselineHD (D*=4k)

On Server CPU, DOMINO exhibits:
• 16.34× faster training than RSC, 14.17× faster training than AND-mask
• 2.89 × faster inference than RSC, 1.97 × faster inference than AND-mask
On embedded devices: 
• Raspberry Pi: 
19.79 × faster than RSC, 15.31× faster than AND-mask

• Jetson Nano
58.44 × faster than RSC, 10.49 × faster than AND-mask

Evaluations

B

A
C

Conclusion:
We propose DOMINO, an HDC-based domain generalization algorithm that provides significantly higher efficiency and better performance than SOTA DNN-based techniques. Our solution provides a 
resource-efficient and hardware-friendly solution, especially for today’s edge devices, to mitigate the distribution shift challenge.  
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