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▸  Popular machine learning (ML) algorithms 
– Require intensive computations over multiple time periods
– Often exceed the computational capabilities of today’s edge devices

▸  Hyperdimensional computing (HDC) has been introduced
– Project low-dimensional inputs to hypervectors in high-dimensional space (𝒟𝒟 ≈ 10k) 
– Resource-efficient, fast convergence, ultra-robust

Why Hyperdimensional Computing (HDC) ?

Robustness
Brains can work with multiple noisy inputs. 

Cerebellum
Cerebellum works with sparse high-
dimensional representations.

Efficient
Brains work at around as low as 20W of energy.

High-Dimensional
Basic elements are hypervectors.

Holographic Encoding
Info of every feature is on all the 
dimensions of the hypervectors.

Well-trackable Algebra
Well-defined and highly-parallel operations.
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▸ Encoding: 
– Inspired by the high-dimensional information representation in human brains

▸ Learning: 
– Samples are bundled based on their similarities to the class hypervectors (distance to each 

other in high-dimensional space)

HDC Preliminaries 

EncodingBase Vectors Hypervectors HDC TrainingInputs
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▸  Are all the dimensions “useful”? (Work I, CyberHD)
– What if we lower the dimensionalities?

▸ Are all the dimensions “good”? (Work II, DistHD)
–  Are there any dimensions misleading the result?

▸  Are all the dimensions “unbiased”? (Work III, DOMINO)
– Distribution Shift: when training (source domains) and testing (target domains) data come 

from different data distributions
–  Are there dimensions specifically contribute to the domain-specific information? 

HDC Issues: Undesired Dimensions
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▸  Issues stem from:
– Static Encoder: never updated during the entire training phase

How to Solve the Issues? Let’s Learn from Human Brains!

⋯ ⋯

Cerebellum Cortex HDC

Neuron

Injury Degenerate Regenerate

Neuron Regeneration

Our Goal

▸  Neurons in human brains: 
– Dynamically regenerate all the time
– Provide useful functionalities when accessing new information

Can we support a similar behavior as brain neural regeneration?
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Our Hyperdimensional Training with Dynamic Encoding

EncodingBase Vectors Hypervectors HDC TrainingInputs

Goal: Bi-Directional Dynamic Encoding



▸  An effective classifier has a strong capability to distinguish patterns, i.e., a testing sample has very 
differentiated similarity scores to each class

▸ Dimensions with similar values store common information across classes — playing minimal roles in 
classification tasks

▸ Comparable accuracy to SOTA HDC with 8.0× lower dimensionalities with 1.85× speed up in 
training and 15.29× speedup in inference 

Work I: Regenerating Insignificant Dimensions
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CyberHD



▸ HDC shows considerably higher accuracy and faster convergence for top-2 classification 
than top-1 classification

▸ We identify and regenerate misleading dimensions — those dimensions closest to the 
incorrect class hypervectors and farthest from the correct ones 

▸ 8.0 × lower dimensionalities and 2.12% higher accuracy compared to the SOTA HDC, 
along with 5.97× speedup in training and 8.09× speed up in inference

Work II: Regenerating Misleading Dimensions
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DistHD



▸ Distribution Shift: A fundamental problem in data-driven ML
– The excellent performance relies on a critical assumption — the training and inference data come from 

the same distribution, but this can be easily violated in reality. 
– Domain Generalization: extract domain-invariant features across known domains

▸ Regenerate dimensions that highly correlated to domain-specific information
▸ 2.04% higher accuracy than SOTA DNN-based domain generalization techniques, 16.34× 

faster training and 2.89× faster inference 

Work III: Regenerating Biased Dimensions
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DOMINO



▸ My publications during the first year of my PhD:
 Junyao Wang, Arnav Vaibhav Malawade, Junhong Zhou, Shih-Yuan Yu, Mohammad Abdullah Al Faruque, RS2G: 

Data-Driven Scene-Graph Extraction and Embedding for Robust Autonomous Perception and Scenario Understanding, 
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024

 Junyao Wang, Luke Chen, Mohammad Al Faruque, DOMINO: Domain-Invariant Hyperdimensional Classification for 
Multi-Sensor Time Series Data, IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2023.

 Junyao Wang, Haocheng Xu, Yonatan Achamyeleh, Sitao Huang, Mohammad Abdullah Al Faruque, HyperDetect: A 
Real-Time Hyperdimensional Solution For Intrusion Detection in IoT Networks, IEEE Internet of Things Journal, 2023

 Junyao Wang, Sitao Huang, Mohsen Imani, DistHD: A Learner-Aware Dynamic Encoding Method for 
Hyperdimensional Classification, the 60th Annual Design Automation Conference (DAC), 2023

 Junyao Wang, Haning Chen, Mariam Issa, Mohsen Imani, Late Breaking Results: Scalable and Efficient 
Hyperdimensional Computing for Network Intrusion Detection, the 60th Annual Design Automation Conference (DAC), 
2023.

▸ I have worked on multiple real-world applications
– Autonomous Vehicles
– Multi-Sensor Human Activity Recognition
– Cybersecurity

Result & Contributions
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