
Scalable Edge-Based Hyperdimensional 
Classification with Brain-Like Neural Adaptation

Junyao Wang, Mohammad Abdullah Al Faruque
University of California, Irvine

SRC @ ICCAD

HDC Introduction

• Binding (+): Element-wise addition, i.e., ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 + ℋ2,  𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≫ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ3 ≈ 0
• Bundling: Element-wise multiplication, i.e., ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ℋ1 ∗ℋ2, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ1 ≈ 0, 𝛿𝛿 ℋ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,ℋ2 ≈ 0

• Reasoning: measuring the similarity of hypervectors,  e.g., cosine similarity  𝛿𝛿 ℋ1,ℋ2 = ℋ1�ℋ2
ℋ1 ⋅ ℋ2

HDC Algebra
Simple and fast, efficient computation.

Efficient
The brain works at as low as 20W of energy

Cerebellum
Sparse high dimensional representations 

Robustness against noise
Works well with multiple noisy input 
and computation

Holographic encoding
Info of every feature is on all the 

dimensions of hypervectors

High-dimensional
Basic elements are hypervectors (~104)

University of California, Irvine, United States

Motivation: Dynamic Neural Regeneration

 Neurons in human brains: 

• Dynamically regenerate all the time

• Provide useful functionalities when accessing new information.

Can we support a similar behavior as brain neural regeneration? 

Our Goal
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Goal: Bi-Directional Dynamic Encoding
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Problem: Undesired Dimensions

  Are all the dimensions “useful”?
• Can we lower the dimensionality without sacrificing accuracy? 

 Are all the dimensions “good”?
•  Are there any dimensions misleading the results? 

 Are all the dimensions “unbiased”?
• Distribution Shift: when training and testing data come from different data distribution
• Are there dimensions specifically contribute to the domain-specific information?

0

30

60

90

10 20 30 40 50

A
cc

ur
ac

y 
(%

)

Iterations

0

30

60

90

0.5k 1k 2k 4k 6k

A
cc

ur
ac

y 
(%

)

Dimensions

The encoder is static: Never updated during the entire training phase!
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Work I*: Regenerating Insignificant Dimensions

(b) Identifying Insignificant Dimensions(a) Impact of Dimension Reduction
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 An effective classifier has a strong capability to distinguish patterns, i.e., a testing sample 
has very differentiated similarity scores to each class. 

 Dimensions with similar values store common information across classes, hence playing 
minimal roles in the classification.

 We regenerate these insignificant dimensions to reduce the unnecessary computations 
involved and improve the inference efficiency. 

* Junyao Wang, Hanning Chen, Mariam Issa, Sitao Huang, Mohsen Imani, Late Breaking Results: Scalable 
and Efficient Hyperdimensional Computing for Network Intrusion Detection, 60th Annual Design Automation 
Conference (DAC), 2023.

Work III*: Regenerating Biased Dimensions

 Distribution Shift: A fundamental problem in data-driven ML 
• The excellent relies heavily on the critical assumption that the training and inference data 

come from the same distribution, but this can be easily violated in reality. 
• Domain Generalization: extract domain-invariant features across known domains

 Domain Specific Models → Class-Specific Aggregation → Domain-Variant Filter → Dimension 
Regeneration → Model Ensemble

 Regenerate dimensions that highly correlated to domain-specific information

* Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque, DOMINO: Domain-Invariant 
Hyperdimensional Classification for Multi-Sensor Time Series Data,IEEE/ACM International Conference on 
Computer-Aided Design (ICCAD), 2023. 
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Dimension Regeneration

Work II*: Regenerating Misleading Dimensions
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  Considerably higher accuracy and faster convergence for 
Top-2 Classification compared to Top-1 Classification

 Calculate the distance between each mis-predicted data 
sample and the two most similar class hypervectors to it 

 Identify and regenerate the misleading dimension, i.e., those 
dimensions closest to the incorrect class hypervectors and 
farthest from the correct ones. 

* Junyao Wang, Sitao Huang, Mohsen Imani, DistHD: A Learner-Aware Dynamic Encoding Method for 
Hyperdimensional Classification, 60th Annual Design Automation Conference (DAC), 2023
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