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* Distribution Shift: when training and testing data come from different data distribution 0.5k 1k 2k 4k 6k = Identify and regenerate the misleading dimension, i.e., those
* Are there dimensions specifically contribute to the domain-specific information? Dimensions dimensions closest to the incorrect class hypervectors and

The encoder is static: Never updated during the entire training phase! farthest from the correct ones.

* Junyao Wang, Sitao Huang, Mohsen Imani, DistHD: A Learner-Aware Dynamic Encoding Method for
Hyperdimensional Classification, 60th Annual Design Automation Conference (DAC), 2023
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(a) Impact of Dimension Reduction (b) Identifying Insignificant Dimensions " Distribution Shift: Afundamental problem in data-driven ML

« The excellent relies heavily on the critical assumption that the training and inference data
come from the same distribution, but this can be easily violated in reality.
 Domain Generalization: extract domain-invariant features across known domains
= Domain Specific Models — Class-Specific Aggregation — Domain-Variant Filter — Dimension
Regeneration — Model Ensemble
= Regenerate dimensions that highly correlated to domain-specific information

* An effective classifier has a strong capability to distinguish patterns, i.e., a testing sample
has very differentiated similarity scores to each class.

* Dimensions with similar values store common information across classes, hence playing
minimal roles in the classification.

* We regenerate these insignificant dimensions to reduce the unnecessary computations
involved and improve the inference efficiency.

* Junyao Wang, Hanning Chen, Mariam Issa, Sitao Huang, Mohsen Imani, Late Breaking Results: Scalable * Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque, DOMINQO: Domain-Invariant
and Efficient Hyperdimensional Computing for Network Intrusion Detection, 60th Annual Design Automation Hyperdimensional Classification for Multi-Sensor Time Series Data,IEEE/ACM International Conference on
Conference (DAC), 2023. Computer-Aided Design (ICCAD), 2023.
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