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Motivation
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• RS2G focuses on subject risk assessment.

• Effectively modeling the relations among road users is very important for autonomous 

vehicle to understand the surrounding environment. 

Challenges: 

• Convolution Neural Networks (CNNs) often fail to account for high-level semantic scenes 

(rarely consider interactions between driving agents and environmental factors)

• Existing graph learning (GL) models rely on predefined domain-specific graph extraction 

rules ⟹ severely impedes model generalizability.

Objective: Data-Driven Scene-Graph Representation
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•  Both rule-based and data-driven Scene-Graph extraction methods start with transforming 
objects to nodes with a node encoder. 

• The rule-based scene-graph extraction relies on fixed rules derived from expert 
knowledge; its encoded edges typically have concrete physical meanings and the 
graphs are constrained by specific domains. 

• Our data-driven scene-graph extraction represents diverse relations between nodes 
with vectors, which better captures latent features and can be more dynamic and 
domain-adaptive. 

Methodology

• RS2G starts with a set of objects and their attributes extracted by a pre-
trained CNN-based model 

• We then utilize our data-driven scene-graph extraction to generate a set of 
scene-graphs of the current scene (Algorithm 1)

• We analyze scene-graphs with our spatial-temporal embedding model, 
consisting of a multi-relational graph convolutional network (MR-GCN) and 
a long short-term memory (LSTM) network 

• Finally, we utilize a multi-layer perceptron (MLP) to classify the risk of the 
driving scenario as risky or non-risky
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The Architecture of Our Proposed RS2G: 
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