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1. INTRODUCTION

We describe the design and rationale of a suite of tool components for

statically analyzing concurrent programs, with systematic exploration of

potential synchronization behaviors (reachability analysis) as a central tech-

nique. The Concurrency Analysis Tool Suite (CATS) is designed to meet

several objectives together:

Analyzing Implementation-Level Code. Successful use of reachability

analysis techniques has been limited primarily to specification and high-level

designs, e.g., protocol specifications rather than implementations. CATS is

intended to analyze implementation code annotated with partial specifica-

tions in the form of assertions. Although the same basic principles apply,

there are several pragmatic differences between analysis of high-level designs

and analysis of actual implementation code. At the implementation level the

relevant synchronization structure of a program is buried in a mass of

irrelevant detail, Separating essential structure from irrelevant detail should

be as automatic as possible.

Modularity for Integration, A salient characteristic of CATS is a modular

design with appropriate interfaces for integration of analysis, testing, and

verification techniques in a software development environment. No single

technique so dominates others that a monolithic tool or environment for

supporting that technique is sufficient for the production of quality software.

A primary goal of this work is therefore to produce an open framework in

which a variety of analysis and testing tool components can be effectively

integrated.

The toolset separates language-specific and language-independent compo-

nents in a manner that supports integration with language processing tools

in an environment. Appropriate decomposition and interfaces are provided to

support association of user-specified properties with source code while main-

taining this separation. This is most clearly illustrated by a temporal logic

model checker divided into an atomic proposition checker and a combiner of

subformulae.

Performance and Capacity. Enumerative techniques are widely consid-

ered impractical for analysis of concurrent software, because of well-known

lower bounds on complexity.1 Nonetheless we advocate a central role for

reachability analysis in analysis and testing of concurrent programs. We

report experience applying CATS to an actual, moderate-size concurrent sys-

tem (a highly concurrent user interface system which was not constructed for

analysis) as well as several variations on a canonical (toy) program. Although

global analysis of large systems will certainly not be feasible, experience to

1A lower bound reflects the inherent complexity of a problem, rather than the complexity of an

algorithm. The same lower bounds apply thus to other approaches analyzing concurrent systems.
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date suggests that exhaustive reachability analysis of natural modules in

real-world software systems is both feasible and useful. Analysis of the user

interface example described here relies on division along a client/server split.

In work reported elsewhere [Yeh 1993; Yeh and Young 1991; 1993; 1994] we

are developing approaches to combine these modular analyses hierarchically.

2. ANALYSIS APPROACH

The term “reachability analysis” is used to describe construction of a state-

transition model of larger modules (or a complete system) from models of

individual processes. The composite state-transition model is often called a

“reachability graph.” These models typically highlight synchronization struc-

ture and abstract away other details of execution. Reachability analysis has

been applied to Petri nets and CSP-like and CCS-like state machine models,

among others [Apt 1983; Fernandez et al. 1992; Morgan and Razouk 1987;

Peterson 1981; Taylor 1983b]. We use the term “static concurrency analysis”

for reachability analysis of finite-state models extracted from program source

code, as described in Taylor [ 1983b].

A primary use of reachability analysis is verification of properties of the

synchronization structure of software, e.g., freedom from deadlock, freedom

from starvation, and mutual exclusion. With respect to these properties,

reachability analysis provides the same level of assurance as formal verifica-

tion. leachability analysis can also be used to support other verification and

validation techniques, as we discuss in Section 5.

Reachability analysis suffers from two major kinds of problems. First, the

details abstracted away in the simplified models may be essential to the

correctness of software. Omitting these details often has the effect of produc-

ing spurious error reports. Approaches to providing useful analysis of a

simplified model of programs differ significantly between design verification

(e.g., communication protocol modeling) and analysis of programs, since in

the latter case it is not feasible to place the burden of extracting the “right”

abstraction entirely on the user. Second, the size of a global model will

usually grow as the product of the sizes of individual process models. More-

over,, basic complexity results [Ladner 1979; Smolka 1984; Taylor 1983a]

imply that there is no universally applicable short-cut without further sacri-

ficing accuracy. The so-called “state explosion problem” has been addressed in

a number of ways, including compact encodings (e.g., binary decision dia-

grams, partial order models) and hierarchical analysis methods.

General Analysis Model. A variety of analysis techniques can be framed in

the general model presented in Figure 1, which decomposes analysis into

generation and testing of possible behaviors. An abstract representation of

the system is constructed, and from this a representation of possible behav-
iors is constructed. This representation of possible behaviors is checked
against a specification of acceptable behaviors, and violations of the specifica-

tion are reported. This basic framework is general enough to describe testing

(where the model is a program; the representation of behaviors is a set of
actuid runs; and the checking procedure is the test oracle), reachability
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System Specification

Model Formulas

I I I I

Fig.1. Generic skeleton ofaprogram analysis technique

analysis (where the representation of behaviors is a state-transition graph),

and constrained expression analysis [Avrunin et al. 1986; Dillon et al. 1988]

(where the representation of behaviors is a set of inequalities, and the

checking procedure is a linear inequality solver), among many others. Al-

though very broad, the model is not so general as to be devoid of content. The

general model is strongly biased toward operational (possibly abstract) inter-

pretations of programs; it does not describe purely structural analyses like

type checking and interface consistency checking, nor derivation of programs

together with their correctness proofs.

With only a slight stretch of the imagination, one can place some kinds of

formal verification in this framework: the model is the program, augmented

by auxiliary variables or control predicates; the specification includes asser-

tions in the program; and the representation of actual behavior consists of a

set of theorems derived from the program, axiom schemata, and rules of

inference. The program is accepted if each assertion in the specification also

appears in the representation of actual behavior. This characterization does

not have much to do with the way formal verification is practiced, but it may

help in thinking about how formal verification can be combined with other

techniques.
The general model of Figure 1 need not reflect the actual organization of a

tool, but we will argue below that it is a good logical decomposition for

reachability analysis tools. The following section describes a particular set of

tool components which are organized along the lines of this model.

3. AN ANALYSIS TOOLSET FOR CONCURRENT ADA PROGRAMS

CATS is a set of tools built according to the general concurrency analysis

model just described. It is initially targeted for concurrent Ada programs.

CATS was designed particularly for integration with other testing, analysis,

and verification tools in a software development environment. Basic design

decisions for reachability analysis are discussed first, in Section 3.1. The

system architecture is described in Section 3.3.

3.1 Design Considerations for Reachability Analysis

The design of CATS instantiates the general framework of Figure 1 with tool

components in a manner driven by lessons from previous implementations of
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similar systems, namely, a clear logical separation of modeling from analysis,

and a model representation whose semantics are distinct from the semantics

of the software being modeled. The following paragraphs discuss these con-

siderations, how they were influenced by other reachability analysis systems,

and how they were applied to the design of CATS.

Separating Modeling from Analysis. Tight coupling of modeling (construc-

tion of a reachability graph) with analysis is tempting. For instance, one

could. easily combine generation of successor states with a check for deadlock,

perhaps avoiding some redundant computations. An earlier prototype tool for

analyzing concurrent Ada pro~ams, constructed at the University of Califor-

nia, Irvine, did just that [Wampler 1985]. In some other reachability analysis

tools,, analysis of a reachability graph is kept strictly separate from genera-

tion of the graph. In the PNut system for analysis of Petri nets [Morgan and

Razouk 1987; Razouk 1987], reachability graphs are built by one program

and analyzed by a completely separate program, with communication be-

tween the two only via the file system or Unix pipes. Important benefits

accrue from this separation:

—The analysis component can be used with different modeling approaches.

In PNut, a complete reachability graph can be generated by the Reachabil-

ity Graph Builder (RGB) tool, or a single trace can be generated by the

Petri net simulator. A trace is a degenerate reachability graph, so the

Reachability Graph Analyzer (RGA) tool can be applied to the output of

either modeling tool.

—The analysis component may be used with different models. A temporal

logic model checking tool constructed at Carnegie Mellon [Clarke et al.

1985] has been applied to models of sequential circuits as well as concur-

rent software, and it has also been interfaced to other finite-state verifica-

tion systems, e.g., the concurrency workbench [Cleveland et al. 1990].

—Both the modeling component and the analysis component are likely to be

simpler.

This factoring of analysis from modeling need not imply a sequential

two-phase operation in which all modeling precedes all analysis, although

current operating system substrates make that the easiest way to compose

tool components. The goal is to maintain a logical separation of modeling and

analysis, and a clean interface between them, without ruling out tight

integration and feedback from the analysis component to the modeling com-

ponent.

Ideally the modeling tool should have both configuration options and

“hook:s” for analysis. The example above, of checking for deadlock as each

state is generated, can be accommodated by a hook for checking local proper-

ties of each state; a number of other safety properties can be checked in this

way, and state information required only for those checks need not be

incorporated in the reachability graph. If only local checks are required, only

the minimal amount of state information to ensure termination in the

modeling engine need be stored. Reductions that preserve particular specified
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properties but not others can likewise be divided between the modeling and

analysis component in a way that does not violate their logical separation,

e.g., the modeling component can provide operations for abstracting away

selected actions and minimizing a model; and the analysis tool can determine

which actions must be preserved.

Well-Defined Internal Representations. Modeling tools for Petri nets or

other models with simple operational semantics have obvious advantages

over tools for directly modeling more complex phenomena such as concurrent

software written in a language like Ada or CSP. The usual approach to

modeling software is first to build a simplified model of the complex artifact,

and then to model executions of the simplified representation. An important

lesson learned from earlier prototypes noted above is that the advantages of

this translation accrue only if the simplified model has an operational seman-

tics independent of the original artifact. That is, one must be able to decom-

pose the question

Does the modeling tool model behaviors of the software accurately?

into the two simpler questions

Is the simplified representation an accurate2 representation of the original

artifact?

Does the modeling tool model behaviors of the simplified representation

correctly?

If the operational semantics of the simplified representation is defined by

reference to the original artifact (e.g., “node type X represents an Ada entry

call,”) this decomposition is lost, This makes it more difficult to assure oneself

that the modeling process is accurate or to diagnose the problem when it is

not, Without an independent semantics for the simplified representation,

development of the modeling tool depends on reasoning about the original

artifact. When the combination of translation and modeling fails, the tool

developer cannot easily localize the problem to an inadequate representation

on the one hand or a failure of the modeling tool on the other.

Use of a completely independent modeling formalism such as Petri nets or

CCS provides the requisite independent semantics, but may do so at consider-

able cost in clarity and performance, Performance is not an issue when the

purpose of the model is to formalize and clarify language semantics, as in the

translation of Ada tasking to Petri nets described by Mandrioli et al. [ 1985],

2 It is necessary to say precisely what one means by “accurate.” One approach is to insist that a

model represent all and only the possible behaviors of a piece of software (both czccw-czte and

precise, in the terminology of Taylor [ 1983b] and Dillon et al. [ 1988]). However, a model which

meets this absolute standard cannot overcome fundamental complexity bounds (e.g., undecidabil-

lty or NP-hardness), because the relation between model and original artifact amounts to a

problem reduction, A reasonable approach M to insist that a model represent all possible

erroneous behaviors, but allow the possibility that some impossible erroneous behaviors are also

represented. A precise definition of this criterion with sufficient conditions for ensuring accuracy

with respect to temporal specification formulae is described in Young [ 1988].
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but expansion during translation is an important consideration when the goal

is automated analysis. In some cases the availability of a body of existing

theory and off-the-shelf tools may partly or wholly compensate for clumsy

translation (e.g., application of Petri net reductions and reachability analysis

tools as in Shatz et al. [1990], but in many cases it is worthwhile to customize

a modeling formalism to an application domain. This specificity need not

compromise the independence of the two semantics.

3.2 ‘The TIG Model of Ada Tasking

The Task Interaction Graph model of Ada tasking was introduced by Long

and Clarke [1989]. Task interaction graphs (TIGs) represent individual Ada

tasks. A task interaction concurrency graph (TICG) is a reachability graph

representing the concurrent execution of a set of tasks making up a program.

Tc~ make this article self-contained and to clarify our modifications to the

model (including how certain “optimizations” may be performed during con-

struction of TIG models from Ada code), we present the original and modified

models here with translations from Ada. In the interest of clarity, we describe

the ‘TIG model as a kind of labeled transition system, and our terminology

and presentation differ somewhat from that of Long and Clarke [19891.

A task interaction graph (TIG) represents the structure of a single Ada

task. Roughly speaking, TIG nodes represent states and sequences of nonsyn-

chronization activities, while TIG edges represent synchronization activities.

For present purposes a synchronization activity is an entry call, an accept

statement, select, select-else, task-begin, or task-end.

Acla rendezvous must be modeled by two steps (engage and finish) for

the ~general case including synchronization activities within accept bodies.

The common special case of rendezvous without nested synchronization can

be recognized in a prepass, and for that case the two steps can be collapsed

into one.

Thle TIG model does not explicitly represent execution time or priorities.

Partly this reflects a choice to focus on properties that do not depend on the

execution platform (e.g., single or multiple processors), and partly it is a

compromise to avoid the expense of a more detailed model. A consequence is

that it is not necessary to model FIFO service explicitly at Ada entry queues;

the cinders in which tasks could execute entry calls are identical to the orders

in which they could be engaged. If a task could be starved by non-FIFO

queuing, it can also be starved at the point just before it makes an entry call.

Entry queues do prevent starvation when one assumes fair scheduling (and

only then). For example, a round-robin scheduler would prevent a task from

waiting forever to make an entry call, and FIFO queuing could then ensure

eventual engagement. Fairness properties never change the set of reachable

states (e.g., they cannot prevent deadlock). FIFO queuing is more cheaply

represented as a fairness assumption external to the explicit graph represen-

tation of reachable states.

In order to use a general rule for building reachability graphs from sets of

labeled flowgraphs, rather than a case-by-case set of rules for the different
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synchronization activities in Ada, we introduce a set of labels similar to those

used in process algebras for modeling elementary actions [Baeten and van

Glabeek 1987; Bergstra and Klop 1984; Milner 1989].

It is usual in labeled transition systems to introduce a single unobservable

action ~, letting all other actions be communication actions. For our purposes

it will be more convenient to introduce a whole set of noncommunicating

actions H, of which q is a distinguished unobservable action. (No member of

H participates in communication, but only q may be removed by such

common axioms as a; q; b = a; b.)

Defindion 3.2.1 (Actions). Let L = 1 U ~ U El be a finite set of elements—
called actions. 2, called the set of names, and X, called the set of conames,

are subsets of L such that names a G X are in one-to-one correspondence

with conames CT= ~. E is called the complementary action of o-. By a small

abuse of notation, we denote the union of this bijection and its inverse as a

function “bar” of one argument, so that ; = u. H is the set of noncommuni-

cating actions, and the distinguished element q = H is called the silent

action.

We write X, ~, or H where no confusion will arise about which set L they

are taken from.

Definition 3.2.2 (Labeled Flowgraph). A labeled flowgraph is a 6-tuple

G=(N, A, L,s, T,l)

where N is a finite set of elements called nodes; A L N X N is called the

edges; s E N the distinguished start node; T c N is the set of terminal nodes;

L = X u % u H is a set of actions; and 1: A + L is a labeling function for

edges. We write n : m to indicate that there is an edge from n to m whose

label is x.

A TIG is a labeled flow graph with actions (edge labels) corresponding to

tasking activities. An Ada program will be represented by a set of TIGs

sharing the same set L of actions. The presence of complementary actions in

different graphs allows the identification of corresponding synchronization

actions in different tasks. By convention we will use names like x from 2 for

actions that represent entry calls, and conames like 2 from ~ for actions

representing Ada accept statements. When we describe the TICG (reachabil-
ity graph) below, we will use bracketed symbols like [ x ] from H to represent

rendezvous. Whereas x and I are communicating actions, their joint occur-

rence as [ x ] (i.e., a rendezvous) is a noncommunicating action because it does

not communicate or synchronize with any third party. This is similar to the

usual practice in labeled transition systems of using the distinguished silent

action to represent completed communications, except that we preserve the

identity of individual rendezvous as elements of H.

Although we limit consideration here to two-party rendezvous between Ada

tasks, it is perhaps worth mentioning that the same representation scheme

extends easily to synchronization with passive entities like protected records
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in Ada 9X (similar to monitors), which could be represented as additional

TIGs. Additionally, actions other than synchronization could in principle be

represented by elements of 1?. However, in reachability analysis one usually

wants to reduce the number of distinct interleavings and the number of

states that must be enumerated by every means available. Shared-variable

accesses, including protected-record access, can be more cheaply represented

by associating potential access with nodes, with no loss in diagnostic power.

(This would not be true of protected records in Ada 9X if their access

procedures were permitted to execute potentially blocking operations.)

Long and Clarke include one more component in TIGs, a function C that

assigns “pseudocode” (regions of Ada source code) to each node. We omit C

from the basic definition above because one of our optimizations will require

associating source code with edges rather than nodes. Informally it will still

be useful to think of task regions being associated with nodes in a TIG. The

task regions for the Ada program of Figure 2 are shown in Figure 3.

Construction of a TIG corresponding to task T2 of this Ada program is

illustrated in Figure 5. We illustrate only the case of rendezvous without

acce~pt bodies to keep the examples as small as possible.

The TIG model as originally defined by Long and Clarke requires that each

task region begin with a single synchronization action, i.e., edges incident to a

TIG-node correspond to the same synchronization action. This simplifies

bookkeeping and improves the accuracy of analyses other than reachability

anal!ysis (e.g., the dataflow analysis reported in Long and Clarke [1991]).

Duplication of TIG nodes with identical synchronization behavior has a

substantial cost, as shown by the experience reported in Section 4,1 (see

Table 1). The putative bookkeeping advantages of duplication can be obtained

at ncl cost by associating code regions with TIG edges rather than TIG nodes.

In the construction below we will actually produce a modified TIG model

rather than the original model as described by Long and Clarke, since it is

easier to describe translation from the modified model to the original than

vice versa. (Implementing either transformation is straightforward.)

Constructing !HGs from Ada. The first step in the construction of a TIG

consists of making all task and entry names unique and of removing state-

ments not involving communication. Procedures and functions containing

tasking activity are expanded in line. 3 A TIG representation of task T can

then be constructed in a syntax-directed manner, as illustrated in Figure 4.

The construction is similar to the usual NFA construction for lexical

recog~izers (Thompson’s construction). However, since the axiom Ex = x for

regular languages has no direct analogue for labeled flowgraphs [Kannellakis

and Smolka 1990] (see the discussion of internal choice below), we cannot

alwa,ys build up graphs from subgraphs by adding silent moves. In addition to

3 Recursive procedures with tasking activities cannot be directly represented by TIGs, nor by any
finite-state representation, but we can construct representations of recursive procedures by TIGs

or other finite-state transition systems that over- or underestimate possible behaviors, in the

same way that a finite-state acceptor can be constructed to accept a superset or subset of a

context-free language.
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with text io,

procedure main is

task TO,

task T1 is

entry P,

entry Q;

end Tl;

task T2.

task body TO is

begin

T1 P;

end TO;

task body T1 is

package boolean.io is new text.lo.enumeration.io( boolean);

done: boolean:

begin

loop

select

accept P,

or

accept Q;

end select,

boolean_lo.get( done);

exit when done,

end loop;

end Tl,

task body T2 is

begin

TI.Q;
end T2;

begin

NULL,

end main,

Fig. 2. A simple Ada program.

introducing nodes and labeled edges, we combine single-entry, single-exit

flowgraphs by merging nodes. The notation merge( n, S) means that the start

node s of S is identified with node n. AH edges s $ m are replaced by edges

n ~ m. Similarly, the notation merge(S, n) means that the terminal node t of

S is identified with n, and edges m ~ t are replaced by m ~ n.
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task body T 1 is

d

itutlal
package .,.
done. boolean,

region

3
egnr

loop

select

I I

T I 1+
5 boolean_io.get(done) 4 boolean_io.get(done)

exit when done,
exd when done;

end loop;
end loop;

I “– “
end T1;

end Tl;

jnal
loop

loop
region

select
select

accept P;& —

or
or

accept Q;
accept Q;

end select,
* end select,

4
mztlal

taskbody T2 E region

P

6 begin
T Q;

‘E3’’”n
--l
jirud
region

Fig. 3. Task regions in the TIG model of the Ada program of Figure 2. Regions are single entry,

which causes duplication of the loop body.

Construction 3.2.3

—cal I Q where Q is a task entry. Introduce two nodes m and n (the initial

and final node, respectively) and a single edge m ~ n. Let Q ● S. An

accept is represented similarly, except the entry name is represented by

@t= ~. See Figure 4(a).

—Sl; Sz. Merge the final node of S’l and the initial node of S’z. See Figure

4(b).

—while C loop S1; end loop. Introduce a new node m. Replace initial and

terminal nodes as follows: merge(m, S1), merge(Sl, m). Loops with exits in

other positions must first be transformed to while loops by “rolling” and

duplicating any code before the exit. See Figure 4(d).

—select SI or . . . or S. end select; where each of the S, is an accept

alternative. Introduce two nodes m and n, and replace the initial and

final nodes of each S, by m and n: merge(m, S,) and merge(S,, n). See

Figure 4(e).

—if . . . then S1; else S’z; end if; Introduce two nodes m and n, and replace

the initial and final nodes of SI and S’z by m and n: merge( m, S1 ), merge

(S1, n), merge(m, Sz ), merge(Sz, n). INote this is identical to the rule for
select. We will distinguish internal nondeterministic choice (if) from exter-

nal nondeterministic choice (select) by attributing nodes, below. See Figure

4(c-f) for a more intuitive view of how this distinction is maintained.

—taslk body -.. is . . . begin S; end; The labeled flowgraph for S becomes the

labeled flowgraph for the task, with the initial and terminal nodes for S

distinguished as initial and terminal nodes for the task.
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(a) Entry call and accept

Call (2 Accept Q

e 9

Q

U

c

.. ..

(c) Infernal choice (if/else)

To <1

~~ i4 c&’ e

... . ... ..................................,,.,.,.,,..,,.,,,.,..,.,.,,,,

(e) External choice (select)

(b) Sequential Composition

To
T

~)
+

e
+J/

(d) Loop (wh//e)

:0

<)*

,,.

A
(edges belonging to

77

,. .... . ...””same edge group)
...... \

Oi*@ e
. ,...,.,,,,,.,,,,,,,,,,,,.,.,,,,,,,,,.,.,.,,,, ........................... ........,.,.,.,,... .....,.,,,,,,,,,,,..,,.

(f) internal and external choice
(Select within If)

.Three edge groups,

*)

.-><*one of which contains

4 ~ R$N# “-””:””-: woedges

./:: .0.:.”.”.-.-S”

\

/~ &@’x

Fig. 4. Illustration of syntax-directed construction rules for TIGs.
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The construction above does not introduce any invisible moves into the

TIG. Implementations will typically obtain the same result but use a different

approach: they begin with a control flow graph representation and treat every

none ommunicating action as an invisible action. Invisible actions are re-

moved in a step analogous to (but different from) the well-known subset

construction for producing deterministic acceptors from nondeterministic

acceptors.

Wle omitted in this construction the annotation of TIG nodes by “edge

groups,” which are necessary for deadlock checking. Edge groups are de-

scribed below, after the transition rule for TIGs, and their use in deadlock

checking is described in Section 3.3.1.

The construction above does not produce a different TIG node for each

in-eclge; it already incorporates one of the “optimizations” that we found

critical to reducing the size of reachability graphs. If desired, nodes can be

split to obtain the model defined by Long and Clarke (one copy for each

in-eclge, treating initiation also as an in-edge) in a postprocessing step. This

is shown in Figure 5.

Transition Rule for TIGs. The rule for combining TIG representations of

individual tasks into TICGS (reachability graphs) is simple and typical of

reachability graph constructions; we match communicating actions and label

reachability graph TICG nodes with tuples of TIG nodes,

Definition 3.2.4 (Reachability Graph). Given a domain N, a distinguished

start node n ~, and a successor relation r c N x N x L, the reachability

graph is the smallest labeled flowgraph G = (M, E, L, no, T, 1) such that (1)

M~N, (2) if n, GM and (n,, nj, a) =r then n,, ●M, (n,, nj) =,?7, and
((n,, nj), a) G 1, (3) if n, G M and ~rzJ,a such that (n,, nj, a) G r, then
n, E T.

Informally, a domain of nodes is just a set of well-formed state descriptions.

Condition (1) says that states in a reachability graph will be well formed;

condition (2) forces it to contain all reachable states; and condition (3)

identifies terminal states in the obvious way.

Definition 3.2.5 (Task Interaction Concurrency Graph (TICG)). Given a

set c)f k TIGs, a TICG-node is a k-tuple of TIG-nodes, one for each TIG. A

TICG is the reachability graph where the domain is TICG-nodes, the initial

node (sl, ..., s~ ) where sf is the initial node of TIG i, and with the following

successor relation:

[xl
(ml,..., mh)+(nl, ..., nh)

iff there exists i and j such that

Tn,L3m, L, nJ+m
1’

and foralll+i, j, ml=nl.

Informally, this says that a state transition consists of an individual pair of

synchronizing tasks (i.e., this is an interleaving model of concurrency rather
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(a) (b) (c) (d)

Fig. 5. Example TIG construction. Steps in the construction of a model of task T 1 from Figure 2

are shown: (a) the representation of individual accept statements, (b) joined by a select

statement, (c) enclosed in a loop (after unrolhng one iteration to move the exit test to a whl Ie

position), In step (d) nodes are split so that all In-edges to a single node represent the same

interaction as required by the original TIG model as described in Long and Clarke [ 1989].

Omitting step (d) improves performance at a slight cost m bookkeeping (edges rather than nodes

must be associated with source code regions) but no cost in modeling accuracy,

than a true concurrency model in which several independent actions might

occur simultaneously).

The TICG corresponding to the Ada program of Figure 2 is shown in Figure

6). TICG-nodes are labeled with triples that describe the state of the three

tasks that comprise the Ada program.

Edge Groups. Potential deadlock is among the most important program

properties that reachability analysis techniques use for detection. One may

intuitively expect that deadlock is manifested by a terminal node in a

reachability graph, but this is not always so. In particular, the deadlocks that

result when task T 1 of Figure 2 executes its loop body exactly once are

represented by nonterminal nodes in the reachability graph (TICG) con-

structed from the TIG model of the program (nodes 2-5-6 and 1-4-7 in Figure

6). The TICG folds together deadlocked states and nondeadlocked states,

resulting in a smaller state space but a nontrivial check for possible deadlock

at each reachability graph node. The difference is a direct consequence of the

treatment of so-called “internal choice,” i.e., arbitrary scheduling and

control-flow choices.4

The task interaction graph model produces flowgraphs with no silent

moves (q actions, in our flow-graph model). However, the distinction between

select and if is essential and must be maintained (see Figure 7). In fact, the
flowgraph model as described so far does not preserve enough information

about the branching structure of programs to detect potentially deadlocked

states. Additional information must be associated with flow graph nodes to

preserve this information.

4 Since we do not model the values of variables (with a few exceptions descr,bed m Section 4), we

must consider data-dependent control-flow branching as arbitrary choice. Although scheduling

decisions are in principle also arbitrary, issues of representing scheduhng decisions do not arise

untd one considers hierarchical techmques in which some scheduling decisions are already

represented in an incomplete model of the system under analysis
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<1,3,6>

Y“’%
<2,5,6> e y <1,4,7>

1[Q]

1

[P]

<2,4,7> @ <2,5,7>

Task T.4

if C then

accept X;

else

accept Y;

end if ;

grou~al

o

group 2
,..%+. ....+.. .a . ., ,.

p.,... ... ,:

Y 7

Fig. 6. The TICG corresponding to the Ada
program of Figure 2. Numbers correspond to
task regions (TIG nodes) in Figure 3.

Task TA

select

accept X;

m

accept Y;

snd select;

I

Task TB

~A. X;

group 3

T

,..’
,..

::: .:.

x

Fig.7. Potential deadlock: ifversus select. Tasks TAand TBcandeadlock, butreplacing TAby

TA’ removes the possibility of deadlock.

Noncleterministic choices in TI(ls are modeled by edge groups, which carry

the same information as refusals [Brooks et al. 1984] or acceptance sets

[Hennessey 1988] in process algebras. Each out-edge from a TIG node belongs

to a single group. (For purposes of deadlock checking we treat termination as

an out-edge leading to a final region.) An edge that is not part of a select

statement will form a singleton group. A select statement with no delay or

else alternative will be represented by an edge group containing one TIG
edge for each select alternative. Thus, the difference between the TI(l repre-

sentations of tasks TA and TA in Figure 7 is that the two edges representing

accept statements belong to different edge groups in the case of TA, but they

belong to a single edge group in the case of TA’.
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There are two kinds of edge groups, blocking and nonblocking.5 Any task

interaction that is not a select alternative is a blocking edge group. Edges

corresponding to alternatives of a select statement without an else or delay

alternative form a blocking edge group, In a select statement with a delay or

else alternative, all select alternatives with the exception of the delay or else

make up a nonblocking edge group. The else or delay alternative produces

one or more blocking edge groups, depending on subsequent control flow.

Consider the following Ada fragment:

select
accept A;

or
accept B;

end select;

In the TIG representation of this fragment, the edges labeled by ~ and ~

belong to the same edge group, which is a blocking edge group. However:

select
accept A;

else
accept B;

end select;

In this fragment, else accept B; is semantically equivalent to or delay 0.0;

accept B;. The else separates the two edges into separate groups. The edge

labeled by ~ belongs to a nonblocking group, while the edge labeled by ~

belongs to a blocking group.

An infinite wait cannot occur in a program execution state in which a select

delay or else alternative is possible. However, it is a consequence of the way

TIGs are constructed from Ada programs that a TIG node cannot have only

out-edges belonging to nonblocking edge groups. Only blocking edge groups

need be considered for purposes of checking individual TICG nodes for

potential deadlock, as described in Section 3.3.1. Since nonblocking edge

groups are irrelevant for this check, in the rest of this article “edge group” or

“group” will mean a blocking edge group.

3.3 CATS Architecture

The organization of the CATS system, and the tool components which com-

prise the system, fits the general model of Figure 1. A more-detailed diagram

of information flow in the CATS system is presented in Figure 8. The system
model is a set of TIGs [Long and Clarke 1989] derived from the source code of

a concurrent Ada program or another design notation for rendezvous-style

concurrent systems. A compiler front end produces a semantically analyzed

graph representation of the program, and this representation is then trans-

lated by the TIGGER component into the task interaction group representa-

5 In Long and Clarke [ 1989], blocking edge groups are called one-edge groups, and nonblocking

edge groups are called zero-edge groups, We have mod]tied the terminology to make the

discussion clearer,
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Annotated
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Fig, 8. Information flow among tool components in CATS.

tion described in Section 3.2. An enumeration of possible sequences of interac-

tions among tasks is represented by a global state-transition graph, which we

call a task interaction concurrency graph (TICG). Explicit specifications in a

branching-time propositional temporal logic are checked using the decision

procedure described by Clarke et al. [1986], and a separate procedure verifies

freeclom from deadlock. Behaviors which violate the specification formulas

are reported directly to the user.

In general, the size of a TICG may be the product of the sizes of the

individual task interaction graphs from which it is constructed. Exhaustive

global analysis of large systems can never be practical, so parceling of

analysis is an absolute requirement. The granularity to which systems must

be divided for analysis depends on space efficiency, fast traversal, and locality

of reference in the representation of TICGS. A reasonable goal is that the

maximum practical granule size should be large enough so that, when a

system is divided into modules in design, each natural module can be

analyzed in whole. We have constructed a separate prototype to experiment

with scalable, divide-and-conquer analysis (but which does not address tool

integration or other critical constraints on GATS); the result of this effort is

reported elsewhere [Yeh 1993; Yeh and Young 1991; 1994], Our experi-

ence suggests that a modular analysis will be practical for large but well-
structured systems if graphs representing a few thousands of states and
events are constructed and analyzed in a few minutes.

Separation of concerns suggests an organization which clearly separates

the generic aspects of reachability graphs from those aspects of TICGS
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dependent on the language of the software under analysis (e.g., Ada). As

it happens, a design that isolates language-dependent features serves also

the efficiency needs of reachability analysis. For these reasons, task inter-

action concurrency graphs in CATS are divided into two parts: a language-

independent attributable graph structure and a set of attributes.

The graph structure underlying a TICG contains no attributes except the

connectivity of the reachability graph. The attributable graph structure is

completely independent of whether the reachability graph is built from task

interaction graphs, a Petri net, or some other model. States and events are

represented as attributes of nodes and edges, respectively, of the basic

attributable graph structure. Attributes are encapsulated separately from the

graph structure.

For space and time efficiency, a parallel array structure is used for repre-

senting the graph structure and its attributes (Figure 9). This results in good

locality of reference, since a typical reference pattern is to traverse the whole

graph while accessing only one or two attributes. In particular, checking

temporal logic specification formulas involves a traversal for each subfor-

mula; and in each traversal one or two boolean attributes is accessed, and
another is produced. The efficiency and convenience of the parallel array

representation comes at some cost in information hiding: the representation

of state and edge identifiers as a dense set of keys is visible to several

components.

An interesting example of reuse of the generic attributable graph structure

underlying the TICGS is a special-purpose, internal representation of task

interaction graphs. Just prior to constructing a TICG, an optimized internal

representation of task interaction graphs is built (e.g., with all identifiers of

tasks and entries replaced by small integers), and references to the original

structure are treated as attributes of the graph. The original structure of the

TIGs reflects a different set of design tradeoffs than reachability graphs: task

interaction graphs of individual tasks are much smaller than TICGS, so

compromising abstraction for performance would be inappropriate. They are

instead represented by an attributed graph structure generated automati-

cally by P-Graphite [Wileden et al. 1988]. P-Graphite manages persistence of

TIGs, allowing them to exist beyond the lifetime of a single program without

explicit input/output. The last-second translation of this representation into

optimized form allows CATS to increase performance without losing all the

benefits of the P-Graphite-based representation.

3.3.1 Checking Sequencing Constraints. CATS checks two kinds of se-

quencing conditions on the behavior of concurrent software as modeled by a

task interaction concurrency graph. Freedom from deadlock is considered an

implicit specification, and is checked using a special-purpose procedure.

Additional constraints can be explicitly specified by the user, by embedding

temporal logic assertions in the Ada source code. Temporal logic assertions

are checked using an adaptation of the model-checking algorithm of Clarke et

al. [ 1986]. When a sequencing error is detected, example violating behaviors

(sequences of events) are produced and reported to the user.
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Fig. 9. Division of TICGS into a language-independent attributable graph structure and a set of

attributes, using a parallel array structure for efficiency and to allow easy creation of new

attributes. The core attributable graph structure and the facilities for adding new attributes (e.g.,

booleim value of a proposition evaluated in each state) belong to the language-independent

porticm of the toolset. (For simplicity, only attributes of nodes (states) are shown here; edges

(events) are attributed in a similar manner.)

Checking for Deadlock. We have described in Section 3.2 why checking for

deac[lock is not a simple matter of recognizing TICG (reachability graph)

nodes with no out-edges. This simple check would suffice for representations

in which internal nondeterminism (arbitrary choice by a single task) is

represented by independent progress of one task (e.g., 7 actions in CCS).

However, representing choice in this manner is costly. In the TIG representa-

tion, a single TIG node represents a region of sequential code which may

involve both internal and external nondeterminism; the “edge groups” facility

of thle TIG representation is used to distinguish between the deadlock poten-

tial of the internally nondeterministic choice (e.g., Ada if) and external

noncleterministic choice (Ada select).

It is easy to show (by reduction from graph k-colorability) that determining

whether a single TICG node represents a potential deadlock is NP-complete

in the number of tasks. However, the problem size is typically very small.

Moreover, avoiding the more complex check at each node by using a modeling

formalism in which internal nondeterminism is represented by state transi-

tions, as in CCS or Petri nets, results in additional size in the reachability
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graph equivalent to the worst case of extra checking at each TICG node and

far more expensive in space. TICG nodes are checked for deadlock in CATS

after calculating their out-edges. We take advantage of the earlier computa-

tion of edges by attempting to find a set of internal choices (assignment of

edge groups to TIG nodes) inconsistent with all TICG edges.

For example, a TICG representation of tasks TA and TB in Figure 7 would

contain a node with a single TICG edge, labeled [ X]. This edge would be

associated with an edge group in the TIG representation of task TA; another

edge group associated with the same TIG node contains a single edge labeled

~. There is no TICG edge associated with this second edge. By assigning this

second edge group to the TIG node (i.e., by assuming the else branch of the if

statement has been taken, and task TA waits only at entry Y), we obtain an

assignment of edge groups inconsistent with all TIG edges, i.e., a potential

deadlock. However, if task TA is replaced by TA’, then the edges labeled ~

and ~ belong to the same edge group, and every selection of edge groups

(only me choke is possible) contains an edge labeled ~ and is therefore
consistent with the TICG edge [ X]. Thus there is no deadlock.

Given the NP-completeness of the check at each TICG node, we cannot do

better in the worst case than exhaustive enumeration of possible edge-~oup

combinations. However, we can perform this enumeration in a heuristic order

based on the intended use of TICGS as well as their typical properties. A list

of thousands of potential deadlocks would be useless (we would halt the check

after some small number of potential deadlock reports), so the important case

is a large TICG with few or no potential deadlocks. Possible assignments are

therefore enumerated in an order designed (usually) to terminate early for

states that do not represent deadlock. This approach has been generally

satisfactory; experience reported in Section 4 varies from an insignificant

portion of total analysis time for an example with no internal nondetermin-

ism to roughly two thirds of total analysis cost in the case of a real-world

example with a great deal of both internal and external nondeterminism.

In select statements with timeout alternatives (else or or delay branches),

only the timeout branch is significant in deadlock checking. Other branches

are considered as separate edge groups, and both these groups and any TICG

edges involving them are eliminated from consideration before the search for

an assignment of edge groups to TIG nodes, Informally, this is because a

process can never be deadlocked (stuck forever) without falling through to the

timeout branch.

In comparing the cost of edge groups to invisible moves, we have considered
only explicit enumeration of reachable states. Implicit representations such

as binary decision diagrams (BDDs) have the same worst-case complexity as

explicit enumeration, but their actual expense depends on the regularity of

the state space rather than its size. We do not know whether edge groups

would be advantageous for symbolic representations, although it would be

straightforward to incorporate edge groups in a BDD representation of a

transition relation. The deadlock check at each TICG node is essentially a

check for satisfiability of a propositional formula, which could be encoded in a

transition rule leading to a dead state.
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Temporal Logic Assertions. The temporal logic supported by CATS is a

propositional, branching-time logic based on the computation tree logic (CTL)

of Clarke et al. [1986]. But whereas the propositions in a CTL formula refer to

states, it is often more convenient to describe sequences of events (e.g.,

rendezvous). Our assertion language is equivalent to CTL (with a different

surface syntax) except for the addition of formulae describing events. Since

CTL is not defined for graphs with terminal nodes, any node without other

successors is given a self-loop (which has no practical consequence since we

perform deadlock checking separately).

The atomic propositions describe states (TICG nodes) or events (which

label TICG edges). An atomic state formula denotes a set of nodes in the

TICG, and an atomic event formula denotes a set of edges; the interpretation

of altomic formulae is the responsibility of a language-specific module of CATS

(which refers to the IRIS abstract syntax graph representation underlying

TIC. nodes [Forester 1991]). The boolean connective and denotes set intersec-

tion; or denotes set union; and not denotes set complement, relative to the

universal set of all states (nodes) or all events (edges) in a TICG. The boolean

formula a -+ b is shorthand for (not a) or b, The temporal operators with

states as operands have their standard meanings in computation tree logic

(see Table 1). The temporal operators involving events express similar no-

tions.

T’he basic event formulas are not strictly necessary. In principle one could

achieve the same effect using standard CTL by transforming the reachability

graph (introducing a new node for each edge), but we found it straightforward

to implement alternative versions of each basic temporal operator.

Model Checking. As in the design of the reachability graph representa-

tion, a main objective in designing the temporal logic checking component of

the system was to keep all language-specific aspects isolated from the rest of

the model-checking system. This is accomplished by separating the process-

ing of atomic propositions, which describe individual events (edges) and

states (nodes) and thus are inherently language dependent, from the logical

and. temporal connective which are independent of the attributes associated

witlh nodes and edges (Figure 10).

A. single module, isolated from the rest of the model checker, is responsible

for determining which nodes and edges match a description. The current

atolmic proposition evaluator matches descriptions of Ada task interactions,

but the design is easily extensible to recognize other states and actions of

interest. For example, to detect concurrent reads and writes of a shared

variable, we would use one atomic proposition to indicate TIG nodes that

perform read (but not write) accesses, and another propositional variable for

write access by each task,G If the model-checking component of CATS were to

be used for a different language or model (say, Petri nets), then a suitable

6 Although we could also extend the TIG model to represent reads and writes as events,

representing their interleavings is more expensive than annotating TIG and TICG nodes.
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Table 1, Computation Tree Logic with Event Propositions

Surface Syntax CTL Meaning

eventually a AFa

eventually ev

always a

always ev

potentially a

potentially eu

a until b A(aUb)

a until eu

AGa

EFa

True of a state s iff s satisfies a or every Immediate

successor state t satisfies eventually a.

True of a state s iff, for each edge e connecting s to

a successor state t, either e matches ev, or t satwfies

eventually ev,
True of state s iff s satisfies a and every immediate

successor state t satisfies always a.

True of state s lff, for each edge e connecting s to

a successor state t, e matches eu, and also tsatisfies

always ev.

True of state s iff s satisfies a or, for some immediate

successor state t. t satisfies potentially a.

True of state s iff, for some edge e connecting s

to a successor state t, e matches eu or tsatisfies

potentially ev.
True of state s ifs satisfies b, or lf s satisfies a and, for

each immediate successor state t,tsatisfies a until b.
True of state s ifs satisfies a, and also, for each edge

e connecting s to a successor state t, either e matches

eu, or else tsatisfies a until eu.
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Fig 10. Language-dependent and language-independent components of the temporal logic

model checker. Many components of CATs aremdependent of theparticular system model In the
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programs Themodel-independent portions can bereused forother reachability analysis capablll-
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attributes of the graph structure. Compare to the overall information flow described in Figure 8.
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procedure for checking atomic propositions (e.g., markings of the net) would

have to be written.

Temporal logic assertions are extracted from comments in Ada source. An

assertion is checked in a bottom-up walk of its expression tree as described in

Clarke et al. [1986], with each subexpression evaluating to a bit vector which

is treated as a boolean attribute of the language-independent attributable

graph structure; the evaluator invokes the language-dependent component

only to evaluate atomic propositions.

The location of each assertion in a source program maybe associated with

man y states in the TICG. An asserted formula is evaluated at all states, but

the result is of interest only in states governed by the location of the

assertion. We therefore interpret each asserted formula p as if it were an

implication at(a) + p, i.e., the proposition must be true whenever control is

at location a, the location of the assertion; at(a) is an atomic proposition

evaluated by the language-dependent component.

4. EXPERIMENTS AND EXPERIENCE

We lhave applied CATS to a variety of canonical example problems in concur-

rency. Experience with one of these (dining philosophers) and with an actual,

nontoy concurrent application are presented below. Three experiments were

conducted on the dining philosophers example to illustrate the salient proper-

ties of CATS. First, the canonical, deadlocking version was analyzed to explore

the capacity of the tool suite in terms of TICG size and to evaluate its

execution speed. Second, an ordering was imposed on the resources (forks) in

order to avoid deadlock. Temporal logic assertions are illustrated with this

version. Third, a butler task was added to ensure freedom from deadlock and

to highlight the problem of spurious error reports caused by data folding. A

solution for this case, namely unrolling the loop in the butler, was analyzed.

The practical potential of static analysis with CATS is demonstrated by its

application to the run-time environment of Chiron [Keller et al. 1991], a

highdy concurrent user interface development system.

These examples exercised all components of CATS. The dining philosophers

examples used the complete system, from source code translation through

error reporting. The Chiron exercise required manual translation from source

code to TIG models because of bugs in the compiler front-end components

available to us. (In particular, we do not have a static semantics analyzer

(“type checker and overload resolver”) capable of handling all the features of
Ada utilized by Chiron, and this analysis must be done before TIGGER can

be used to build the TIGs.) Therefore, we constructed the TIG representations

of Chiron tasks manually by inspection of the source code. This is a straight-

forward, but tedious, process for pure Ada code, as outlined in Long and

Clarke [1989]. Manual extraction or annotation of synchronization structures
continues to have a role for certain program features, e.g., to model interac-

tion with the XView toolkit through Unix signals. While, in principle, transla-

tors like TIGGER can be developed for multilanguage programs and operat-

ing system facilities, in practice analysis is most likely to involve a mix of
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automatically extracted and manually provided (and therefore suspect) tasks

and features. In such cases it will be important to combine static concurrency

analysis with run-time monitoring, so that the accuracy of manually con-

structed portions of models can be validated through testing.

4.1 Dining Philosophers

The dining philosophers problem is a well-known example of exposure to

deadlock, and a simplified version of a significant class of problems for

concurrent systems. (See Andrews [1991] for a good modern treatment,)

While dining philosophers is a “toy” problem, its simplicity and regular

structure are convenient for experimenting with variations on representation

and analysis procedures and for illustrating aspects of the analysis tool, We

assume the reader has some familiarity with the problem.

Simple Dining Philosophers. The first version of the dining philosophers

considered is the classic (non-) solution, in which all n philosophers remain

seated at the table, and each picks up the left fork before the right. In this

version deadlock occurs when each philosopher holds one fork, and analysis is

trivial, once the TICG is built. The interesting questions concern the impact

of certain details of the TIG model on capacity and performance of tool

components.

The dining philosophers system consists of 2 n processes (Ada tasks), one

for each philosopher and fork. The performance of the TICG builder and

deadlock checker is shown in Table II in terms of the sizes of the TICGS that

could be handled, and the CPU times7 required to build them and check for

deadlock.

For the unoptimized cases each communication (fork up, or fork down) is

represented by two distinct interactions (beginning and end of Ada ren-

dezvous). In general modeling a rendezvous as two synchronizations is neces-

sary (e.g., when entry calls or shared-variable references are nested within

accept statements), but it is straightforward to recognize the special case of

“synchronization-only” rendezvous which can be represented by a single

interaction; this is given in the table as optimized cases. In this example, it is

also clear that the order in which tasks are initiated is irrelevant; the

optimized version does not explicitly model the initiation step of each task.

The TIG model as originally described by Long and Clarke [ 1989] requires

that all edges entering a TIG node correspond to a single region of source

code; thus the entrance to a loop is often represented twice, distinguishing
the first iteration from subsequent iterations. While this restriction makes

some bookkeeping chores simpler, it has a cost in performance. The column

7 These CPU times were obtained from the Unix hme command (user + system), on a 64 MB Sun

4/670, They were not obtained under controlled conditions, but have been sufficiently consistent

over several runs that (given the shape of the curve) more precision was not deemed useful. The

CATS tools were compiled with SunAda I. O(d). Times in tables are always for budding the TICG

and checking for deadlock, and do not include checking for wolatlons of temporal logic formulas

because, in every case, the cost of temporal logic model checking was dominated by the cost of

building the TICG.
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Table II. Dining Philosopher TICG Sizes and Times for TICG

Construction and Deadlock Checking

Philos- [’l, optlnztzed Optzmzzed Modtfied TIC ,tlodel
ophersi States Edges Time, States Edges Time, States Edges
(Tasks)

Time,
sec sec. sec.

8, c las,szcal deadlockznq uer.saon

2(4) 40 56 22 19 28 24 8 10 1.4
3(6’) 268 ,576 ~,~ 84 186 26 26 51 16
4(8) 1,79? 5,168 4 2 375 1,112 3,1 80 212 2.1

5 (lo) 11,744 4~,440 155 1,653 6,130 4.7 242 805 j ~

6 (12) 76.720 332,9?8 .?46,1 7,~~2 ,3z,412 ~~o,j 7’28 2,910 2.9
7 (14) 3~,063 166,502 5575.3 2,186 10,199 ,5.2

8 (16) 141,167 837,808 35773.7 6,560 34,984 26 0
9 (18) 19,682 118,089 3368

10 (20)— 59,048 393,650 8090.1

zz W’zth butler task

2 (5) 157 286 2.6 58 110 2.5 28 50 1.4
3 (’r) 1,951 4,968 4,7 489 1,374 3.5 154 411 2.0

4 (Y)

1

~~,~~1 72,356 75 8 I 3,794 14,204 19.7 I 832 2.964 2.7

:: (11) 28,686 134,045 307.5 4,474 19,925 68
6 (13) 24,040 128,478 55,8

22z U’tth unrolled butler task

5b ,59 26 28 31 2.6 I 11 11 152 (5)

3(7)

‘1 (9)

,5(11)

6 (13)

7 (15)

1,025 2,135 :39

14,444 42,467 1418

modified TIG model relaxes this restriction, producing more compact TIGs.

These modified TIG models were constructed manually because we have not

yet modified TIGGER or implemented a separate optimizer to produce TIGs

in tlhis form. These modifications applied to a single fork task are illustrated

in Figure 11.

For the four-philosopher problem, the deadlock checker produced the report

below for the single deadlocked state. It has two portions: the first is an

example sequence of task interactions leading to the deadlocked state, and

the second lists the interactions that each task is ready to perform. In this

example, each task is only ready to perform one interaction, though in

general it maybe waiting on any number, e.g., all open alternatives of an Ada

select statement.

Deadlock Violation Detected:
Engage phill, forkl .up
Ftmsh phi[l, forkl.up
Engage phi12, fork2.up
Finish phi12, fork2,up
Engage phi13, fork3.up
Finish phi13, fork3.up
Engage phi14, fork4.up
Finish phi14, fork4. up
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Begin Accept
(Fork,

o

fork_up
unoptmzed) ui!gi!gwE;-3

Begin Accept
fork_up

Accept Accept

(Fork, o fork_up

optimfzed)

Accept
fork_up

fork_down

Fig, 11. TIG representations of a single fork task m the dining philosophers example. In the

general case, each rendezvous must be modeled as two separate interactions as in the urzopti-

mized version. Synchronization-only rendezvous can be modeled as single interactions as in the

optwmzed version. TIG nodes are annotated with corresponding regions of source code (not

shown). Relaxing the requirement that each node correspond to a region with a unique beginning

allows the third version modified TIG model The impact of these representation changes is

apparent in Table II.

phill attempting to engage fork4. up
phl12 attempting to engage forkl .up
phl13 attempting to engage fork2,up
phi14 attempting to engage fork3,up
forkl attempting to accept forkl down
fork2 attempting to accept fork2.down
fork3 attempting to accept fork3.down
fork4 attempting to accept fork4.down

Resource Ordering. The dining philosophers experiment was repeated,

with the modification that (1) an ordering is imposed on forks and (2) each

philosopher picks up its lower-numbered fork first. This is a well-known

approach to deadlock avoidance and had the expected effect: the deadlocked

state which is detected in the first version of the dining philosophers is

absent in the version with resource ordering. The size of the TICG, time to
generate it, and time to check each state for deadlock are approximately the

same as for the first version of the dining philosophers problem.

Temporal Logic Checking. After freedom from deadlock was verified in

the four-philosopher system with resource ordering, the following temporal

logic assertion was checked:

(always (eventually accept forkl up) and
(eventually accept fork2.up) and
(eventually accept fork3.up) and
(eventually accept fork4.up))
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Toigether with the FIFO acceptance of queued entry calls guaranteed by Ada,

this property should guarantee that philosophers never starve. If the task

scheduler is unfair, though, the property may not hold. A sequence of events

violating the constraint is

Engage phill, forkl .up
Finish phill, forkl.up
Engage phlll, fork4.up

((LOOP))
Finish phill, fork4.up

report-ed to the user:

Engage phill, forkl down
Flrwsh phlll, forkl down
Engage phill, fork4,down
Finish phill, fork4.down
Engage phill, forkl.up
Finish phlll, forkl .up
Engage phill, fork4.up

If one knows that a particular implementation provides a fair scheduler, it

may be desirable to suppress such reports by making a fairness assumption.

Algorithms for incorporating various notions of fairness in temporal logic

model checking are well known [Clarke et al. 1986] but have not yet been

incorporated in the CATS model checker.

Adding a Butler. Another well-known solution to the dining philosophers

problem is the addition of a “butler” task, which ensures that the number of

philosophers at the table is one fewer than the number of forks. The butler

task is as follows:

task body BUTLER is
ROOM _ OCCUPANTS : natural := O;
ROOM. CAPACITY : constant := PROBLEM - SIZE;

begin
loop

select
when ROOM _ OCCUPANTS < ROOM – CAPACITY = >

accept ENTER;
ROOM . OCCUPANTS = ROOM. OCCUPANTS + 1;

or
accept LEAVE;
ROOM . OCCUPANTS := ROOM_ OCCUPANTS – 1;

end select;
end loop;

end BUTLER;

Each philosopher is modified to enter the room before picking up either

fork and to leave the room after eating. When the number of philosophers in

the room reaches the limit (one less than the number of forks), the butler
refuses to let another philosopher enter until some philosopher leaves, thus
avoiding the deadlock situation. Addition of the butler task, combined with

additional complexity in each philosopher, adds considerably to the size of the

generated TICG, as shown in part ii of Table II.

ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 1, January 1995.



92 . Michal Young et al.

The dining philosophers problem with a butler illustrates one of the

problems of static concurrency analysis, namely, that it abstracts away

variable values even when those values are critical to the synchronization

structure of a system. In the present case, abstracting away the variable

room _ occupants causes an inaccurate representation of the behavior of the

butler—it fails to prevent all the philosophers from entering the room

simultaneously. When the TIG model of dining philosophers with a butler

was analyzed, it reported a deadlock that cannot actually occur.

The role of abstraction in analysis is somewhat different in analyzing

implementations (source code) than in reachability analysis of specifications

and high-level designs. In the latter, abstraction can be largely left to the

user; variable values and other details actually represented in the artifact to

be analyzed may be presumed to be significant for the properties being

analyzed. In source code of concurrent programs, the vast majority of vari-

ables should be irrelevant to synchronization structure (or else the program

is certainly incomprehensible); an analysis tool may presumptively ignore

them, but must accommodate selective modeling of a few critical variables.

Unrolling the Butler. One partial solution to the problem of spurious error

reports is to combine static concurrency analysis with symbolic execution.

Elsewhere [Young and Taylor 1988], we have described an approach in which

candidate errors exposed by static concurrency analysis are used to guide a

symbolic executor. An alternative approach is to use symbolic execution for

partial evaluation before concurrency analysis. For instance, we can use

symbolic execution to “unroll” the butler, that is, to trade the complexity of a

counter for that of control flow, Symbolic execution to perform such a transla-

tion is similar to loop unrolling in an optimizing compiler. We have con-

structed a separate prototype processor for the Ada-like design language PAL

that performs this transformation automatically [Yeh and Young 1991], but

since the tool described here does not yet include a symbolic evaluator, we

performed the unrolling manually. For a fixed value of room – limit, the butler

task is unrolled into the code shown in Figure 12.8

The count of philosophers in the room is replaced by nesting copies of the

loop body. At each step in the unrolling, the guard predicate room – occupants
< room – Iimlt evaluates either to True or False, and can be discarded. When

it evaluates to False, the unrolling process terminates (the innermost copy of

the select clause contains an accept leave immediately after the accept enter).
The eventual termination of the unrolling process guarantees that the value
of room – occupants will never exceed a fixed maximum value, but informa-

tion in the butler task alone is not sufficient to verify that it cannot be

decremented after reaching zero. For this reason, the outermost accept leave
alternative is associated with an error state in the TIG representation;

absence of this state in modeled executions can be checked automatically.

Unfolding in this manner must be applied very selectively; completely

unfolding a variable with a large value domain can be disastrous. Since

8 We thank Sol Shatz for pointing out an error in an earlier version of this code.
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loop

select -- ROOJI.OCCUPANTS = 0:

accept ENTER:

loop

select –– ROOfiI_OC’CLTPA NTS = [:

accept ENTTER:

loop

select –– ROOJ{_OCCUPAVTS = 2:

accept ENTER;

–– etc. unttl ROO.W_OCCUPANTS = ROO.Lf_LI,VIT:

accept LE.4VE:

or

accept LEAVE;

end select;

end loop;

or

accept LEAVE;

exit:

end select;

end loop;

or

accept LEAVE: –– error: ROOM_ OCCUPANTS = – 1:

exit;

end select:

end loop;

Fig. 12. “Unrolled butler task. In practice it is more convenient to unroll the graph model

rather than the source code, but the effect is the same.

human judgment seems necessary in this modeling decision, we envision (but

have not yet implemented) a facility by which the user indicates which
variables should be unfolded, and to what extent. We have implemented

variable unfolding in a separate prototype tool [Yeh 1993; Yeh and Young

1993; 1994] and see no technical obstacle to supporting better user control.
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A TIG representation of the unrolled version of the butler was constructed,

and the analysis was repeated; see Table II part iii. Note that even though

the unrolled version of butler is larger than the original version, it does not

cause the TICG to become larger. This will always be the case when an

eliminated variable was used to keep track of the states of other tasks, since

the value of the variable is purely a function of those states. This is clearly

the best case for selective unrolling with partial evaluation.

Discussion. Realistic problems (like the Chiron example next) are more

relevant than artificial models like dining philosophers to assessing overall

performance, but variations on the dining philosophers problem illustrates

the performance impact of certain modeling decisions, First, it is clear that

exploiting special cases (like synchronization-only rendezvous) and otherwise

avoiding unnecessary complexity in modeling task structures (the optimized

TIG model) are essential; they make a significant difference in the size of the

system that can be analyzed in a reasonable time, or the size of parcels that

larger systems must be broken into before analysis will be practical. Our

experience with other examples, real and artificial, bears this out. Second,

the “unrolled” version shows that, in some cases, increasing the accuracy of

analysis through symbolic execution can actually improve performance.

4.2 Chiron 1.2 Run-Time

The Chiron user interface development system (UIDS) [Keller et al. 1991;

Taylor and Johnson 1993] represents a modern, moderate-size system.

Chiron 1.2 comprises roughly 105 source lines of code, designed and imple-

mented over a two-year period with the equivalent of five individuals working

at any one time. The run-time environment includes a reasonably complex

task structure and was not “designed to be analyzed” (it is not a toy example).

To aid in understanding the significance of the CATS analysis of Chiron, we

provide a brief overview of Chiron’s purpose and structure.

The Chiron UIDS was built to address concerns of cost, maintainability,

and sensitivity to changes in the development and maintenance of user

interfaces for large applications. Chiron provides a series of interface layers

that limit the propagation of effects from changes within the various layers.

To separate application code from user interface code, user interface agents

called artists are attached to selected abstract data types belonging to the

application. Each artist implements a separate user interface, specifying
logical appearance and behavior. Operations on the abstract data types

within the application trigger user interface activities within the artist by

means of dispatchers which are transparently (to the application) wrapped

around the ADTs by a preprocessor at compile-time. At run-time, the dis-

patcher intercepts all operation calls on the ADT and notifies each of the

artists associated with that ADT of the operation. Artists may also respond

directly to events initiated by user(s) and inform the application of necessary

changes through the dispatchers.

Chiron also provides insulation between the user interface layer and the

underlying system; artist code is written in terms of abstract depiction
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libraries that insulate the code from the specifics of particular windowing

systems and toolkits. Calls by the artists to create/update depictions are

transmitted over an interprocess communication link to a Chiron server. The

server implements, in C!++, an inheritance hierarchy of abstract depiction

classes. Calls from artists thus create and manipulate instances of these

classes; the server maintains an “abstract depiction” of each artist’s user

interface. (Thus while most of the code of interest in the concurrency analysis

is Acia, calls from Ada tasks through the abstract depiction hierarchy must be

followed to determine all possible interactions.) The server also oversees

rendering of the abstract depiction to a concrete depiction, using a windowing

system and toolkit.
Ccmcurrency is pervasive in the Chiron architecture. Inside an application

there can be multiple execution threads; there is no requirement for a user

interface listening/dispatching routine to have exclusive control. Multiple

artists can be attached to a single application abstract data type, providing

alternative forms of access by a single user or coordinated access and manip-

ulation by multiple users,

The key run-time components of Chiron are thus (1) the Chiron client,

which consists of the application plus all artists, and (2) the Chiron server,

which is responsible for maintaining and rendering the logical depictions

created by the artists.

The task and package structure of a generic Chiron run-time environ-

ment is shown in Figure 13 using a simplified variation of Buhr diagrams

[Buhr 1984]. Rectangles depict packages, nested as drawn. Parallelograms

represent tasks, with arrows from callers to entries. Dots beside arrowheads

represent guarded entry calls. Shadowed parallelograms with dashed lines

indicate optional multiple task instances. While this figure is intended to

highlight task interactions, the ADT is not a task, and the dashed arrows

leading to it are simply procedure calls. Not shown in Figure 13 is the

capability for multiple ADTs, which involves multiple instantiation of the

Dispatcher package and interactions among dispatchers, the application, and

artists.

All. ADT operations are performed by either the main application task,

labeled Start-App, or by artists in response to user requests (events). An

artist has a separate task entry for each operation. Because there is no

distinction among these various operations from a task interaction viewpoint,

they are lumped together as a single “artist actions” entry in our model.

Access to the AD’T by Start–App and the artists is serialized by a concurrent

read,, exclusive write lock mechanism, implemented as the Control task in the

Dispatcher-Controller package. A two-level package interface to the Control

task handles the rather intricate dispatcher details such as notifying all other

artists of a change to an ADT by any one artist or the main task.

As noted above, due to limitations in the front-end language processing

tools available to us, the Chiron task interaction graphs were necessarily

constructed by hand. Chiron also contains two examples of task interactions

that are typically incorporated manually: Unix signals and interlanguage

procedure and task entry calls. The Unix signals are tied to task entries via
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Fig. 13. Chiron 1.2 task and package structure.
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representation clauses and therefore are modeled as task entry calls. The

several Ada task entry calls in the C++ hierarchy were readily identified

because the interlanguage interfaces are explicit in the code,

Another form of analyst intervention is parceling, or partitioning into

components that are amenable to analysis. Parceling removes interleavings of

unrelated tasks and consequently is more effective with decreasing compo-

nent interaction (loose coupling). Chiron provides a good example of the

applicability of this approach: the design separates it into two operating

system processes, the server and the client/application. Therefore, a natural

parcel boundary is along this split. The two “in-between” tasks shown in

Figure 13 provide a higher-level interface for handling the operating system

signals and all interprocess communication. The relevant portions of these

tasks were included in the analysis on both sides of the split.

TICG Sizes. As shown in Table III, the concurrency state graphs are of a

very manageable size. The single-artist client/application module, with 12

tasks, is analyzed in less than half a minute. Adding a second artist increases

the ‘TICG size greatly, since each artist interacts nearly independently with

the main Start–App, Result–Queue–Monitor, Mapper, and Dispatcher. An

analysis with two artists takes over 40 minutes of CPU time.

Roughly one-third of the execution time was spent building the TICGS and

two-thirds checking for deadlock. This ratio varies with the particular TICGS

analyzed; as explained in Section 3.3.1, the check of each concurrency state

may at worst require time exponential in the number of edge groups per TIG

node. In contrast to the dining philosophers problem, Chiron interfaces

involve a mix of internal and external nondeterminism which must be

analyzed in the deadlock-checking step.

Deadlock States. The Chiron 1.2 design includes modifications to the

original Chiron 1.0 design to avoid deadlock. The following discussion results

from our analysis of Chiron 1.0, which illustrates better the information

provided by the deadlock checker.

The deadlock check of Chiron 1.0 reported 24 potential deadlocks on the

server side. Further investigation revealed that none were in fact feasible.

The server had a shutdown mechanism which was initiated by the

Signal-Handler task after catching a user-originated kill signal from the

operating system. Of the potential deadlocks, 22 were after the Signal–Han-

dler had started the shutdown. This was expected because we did not model

terminate and because some tasks waited on that alternative. To verify the

shutdown hypothesis, the Signal–Handler was disabled by disconnecting the

edge representing the shutdown rendezvous from its initial TIG node. The 22

previously reported shutdown deadlocks vanished, confirming their origin.

The two remaining deadlock reports were manually inspected and were

determined to be infeasible. Both involved variables in guards to select

statement alternatives in which all the alternatives were guarded. Inspection

of the program logic revealed that at least one alternative must always be

open
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Table 111. Chiron 1.2 TICG Sizes and Construction/Deadlock

Check Times

Time

Component Tasks States Edges (sec.)

server 8 9,494 35,612 171

client\ application, 12 8,055 36,003 19,2

one artist

clientlapplication, 13 110,674 547,846 2426.8

two artists

On the client/application side (with one artist task), 17 potential deadlocks

were originally reported.g Fifteen were due to the same shutdown mechanism

as on the server side, The remaining two represented actual deadlock states,

and had been previously observed in the operation of Chiron. These were

caused by a race condition on a variable that tracked the number of tasks

(artists and application) processing dispatcher calls. The dispatcher was
redesigned to eliminate this anomaly; there are now 3 reported deadlocks for

the single-artist client and 18 for the two-artist client, all of which are

artifacts of not modeling the shutdown procedure.

Other Tasking Anomalies. While constructing the TIGs for each of the

tasks, we noted another synchronization anomaly, which was not previously

known to the Chiron developers. It involved a race condition on an unpro-

tected variable in the Dispatcher–Controller, a variable writable both by the

Control task and by others outside the package through access procedures.

Access to the global variable was serialized through the Control task, and

analysis was carried forward on the modified system.

5. DISCUSSION

Reachability analysis capabilities like those provided in CATS are limited in

several ways. They are applicable only to analysis of synchronization struc-

ture, and not functional correctness, performance, robustness, etc. Moreover,

even analysis of synchronization structure has limitations. While the gross

size of a program to be analyzed (in lines of code or some other measure) is

not an issue, analysis is typically limited to small collections of tasks on the

order of a dozen. (Hierarchical composition of these small collections is

possible; Yeh and Young [1991] describe encouraging progress in this direc-

tion.) Accuracy of the analysis is limited by elision of details, including

control flow determined by variables whose values are not completely mod-

eled.

We stress, however, that CATS is not intended to be used as a standalone

analysis tool. Reachability analysis is most useful as one among several

9 This format of deadlock reports is described in Section 4.1.
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analysis and testing techniques in a software development environment.

Major design decisions in CATS were shaped by a combination of performance,

applicability, and (especially) modularity constraints in this context.

Integrated Application Strategy. Our long-term goal is to support an

extensive collection of analysis and testing techniques, integrated to capital-

ize cm the strengths of the individual techniques and compensate for their

weaknesses. We aim for a level of automation in coordinating analysis

activities at least equal to the level of automation provided for compilation in

contemporary environments.

TO achieve this level of integration and automation, analysis at each point

in development must be composed of several steps, viz., (1) examine the

current structure of the system being analyzed and a repository of asserted

properties which have been established or alleged for portions of the system;

(2) cletermine which analysis techniques are currently applicable; and (3)

attempt to apply them. “Results” of an analysis may include indications of

why particular techniques could not be applied and suggestions for guiding

reanalysis or restructuring the system. Both results and dependencies among

resu:lts must be stored for use in later reanalyses.

CATS is suited to such an integrated strategy, and the tool components are

organized to facilitate it. Several simple checks of a system and its asserted

properties can be used to determine applicability of CATS. Static concurrency

analysis in CATS can both make use of the results of other techniques and

produce results useful to other testing and analysis tools.

Static concurrency analysis is applicable to systems with static task struc-

tures (without dynamic creation of unbounded numbers of tasks and without

dynamic identification, e.g., arrays of tasks). When these conditions are met,

CATS components can be combined in an appropriate configuration depending

on whether only deadlock checking, only safety properties, or both safety and

Iiveness properties should be checked; this can be determined simply by

inspecting assertions in the code. In the absence of detailed user guidance in

partitioning a system into modules small enough for analysis, scope structure

together with worst-case estimates of TICG size may be sufficient to deter-

mine whether tasks within a program unit are likely to be successfully

anal:yzed.

Results of flow analyses would be particularly useful in static concurrency

analysis. For example, if CATS is to check for potential data races, variables

that can be accessed by more than one task should be identified in a prior

interprocedural data flow analysis. Similar simple flow analyses may elimi-

nate or transform some tasks before analysis, e.g., a simple server task acting

as a monitor [Hoare 1974] to protect a data structure can usually be elided.

The required interprocedural analysis is similar to that used in optimizing

Ada compilers for recognizing monitor clusters [Hilfinger 1982] and can be

extended to elide hierarchies of server tasks iteratively.
TI(G and TICG structures can be stored for further use, both for incremen.

tal composition with TIG or TICG representations of other parts of a system

and for use in other analysis techniques. Incremental composition is dis-
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cussed elsewhere [Yeh and Young 1991]; here we briefly consider some other

uses of TICGS.

Formal Verification. Formal verification can in principle provide a high

level of assurance for a wide variety of program properties, but for the

foreseeable future the role of formal verification will be limited to algorithms

and high-level designs, or to particularly critical properties of very small

systems or components. If formal verification is to be used at all, it must

coexist with other analysis and testing techniques. Static concurrency analy-

sis may be a useful adjunct to formal verification, e.g., checking for confor-

mance between verified high-level designs and actual code at the granularity

of a few tasks at a time. A simple, but potentially useful, application of static

concurrency analysis is to mechanize trivial proofs of noninterference or to

alert the verifier when possible process interleavings make a nontrivial

cooperation proof necessary. A TICG structure, together with a record of

variables potentially accessed in each basic block, can provide the required

information.

Testing. A basic premise of most approaches to software testing is that

programs are characterized by input-output pairs, and that output is com-

pletely determined by input. In concurrent software, output is usually not

completely determined by input (because of apparent nondeterminism in

process schedulers), and output values may not even be the most important

property of software. Effective testing strategies for concurrent software must

include oracles for accepting or rejecting individual test runs, stopping rules

(adequacy criteria) for deciding when concurrent software has been tested

“enough,” and methods for creating test cases. The TICG structure produced

by CATS is potentially useful for adequacy criteria.

In particular, Taylor et al. [1992] describe a method for using concurrency

graph models of programs in defining structural test coverage criteria. While

they used a flowgraph model for their definition of a test case coverage

hierarchy, the results can be transferred to a TICG model. Additionally,

Weiss [1988] has developed a formal theory for reasoning about test coverage

based on representing concurrent programs as a set of simulating sequential

programs termed serializations, which are essentially similar to paths in a

concurrency graph.

The structural coverage criteria defined to date are likely to be impractical,

given the difficulty of determining which paths (or serializations) are actually

feasible, but one can devise pragmatic variants. For instance, one might

explore only the portion of the state space corresponding to observed execu-

tions, in order to recognize points where a nondeterministic choice could have

led to a different execution history for the same test data. A configuration of

CATS providing a suitable, directed, exploration component could be con-

structed by replacing a single small module responsible for search strategy.

Similar directed exploration techniques have been proposed as aids to debug-

ging [Taylor 1984] and incorporated in a debugging tool that combines static
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and dynamic analysis [Raither et al. 1990]. Techniques for forcing a concur-

rent or distributed program through a chosen sequence of nondeterministic

choices have been described by LeBlanc and Mellor-Crummey [1987] and by

Tai et al. [1991].

6. RELATED WORK

Variations on the basic reachability analysis technique used in CATS have a

long history, with most early work in the field of communication protocol

analysis [Sunshine 198 I]. Many concurrency analysis tools have been devel-

oped for high-level designs, algorithms, and protocols (e.g., Fernandez et al.

[1992] and 1301zmann [1991]), but few have been developed for programs

(excepting code generated from protocol descriptions). While similar tech-

niques are applicable at both levels, the pragmatic considerations are differ-

ent. In particular, details irrelevant to synchronization structure are un-

avoidably present in source code, and the relevant portions of the program

must be identified and extracted.

The most common approach to integrating concurrency analysis tools in a

development environment is to translate software artifacts into a fixed

modeling or analysis formalism. Examples include translation of Ada to Petri

nets [ Shatz et al. 1990], translation of Lotos to Petri nets [Fernandez et al.

19921, and translation of CCS process graphs (with labeled edges and unla-

beled nodes) into Kripke structures (with unlabeled edges and labeled nodes)

to interface with a temporal logic model checker [Cleveland et al. 1990]. This

is attractive when a small translation effort permits reuse of existing analysis

tools, and the performance of those tools may conceivably make up for their

lack of specialization.

Translation is tool combination at a coarse level; CATS is designed to

support combination and reconfiguration at a finer grain, e.g., coverage

testing with the directed exploration techniques discussed in Section 5. We

have argued that static concurrency analysis can be integrated with other

analysis and testing techniques and tools, and we have described some

possible combinations. An important thread of future work will be to produce

additional working examples of integration, particularly those involving dy-

namic analysis of time-sensitive parallel systems.

Additionally, we intend to exploit the modular structure of CATS and

generalize it further to analyze systems in a mix of design and implementa-

tion notations.

Computational expense is a continuing concern in reachability analysis

techniques for concurrent software. Several approaches exploit regularity in

state spaces to speed enumeration and reduce storage. McDowell [1989] has

implemented a static analyzer that merges a set of related states. Helmbold

and McDowell [199 1] present a generalization called “entity folding.” Several

approaches exploit regularity in sequences of states, noting that many inter-

leaving of independent events are redundant. Godefroid’s sleep set avoids

exploring all interleavings of independent events; all states are still enumer-
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ated, but not all of them must be stored [Godefroid et al. 1993]. Valmari

[1990] recognizes a particular kind of independence between events (called

“stubbornness,” or sometimes “persistence”) and elides both redundant event

sequences and states. Our aim in CATS has been to obtain adequate perfor-

mance in combination with other important constraints, and our current

implementation is already adequate for analysis of systems well beyond the

comprehension of an unaided programmer. As it happens, though, the modu-

lar structure of CATS should make incorporating some of these performance

enhancements reasonably straightforward.

Although exponential lower bounds apply to all possible algorithms for

deciding exposure to deadlock and other interesting properties of concurrent

programs, symbolic techniques may better exploit regularity in some cases.

The constrained expression approach represents possible interactions be-

tween tasks by a set of inequalities relating counts of event occurrences

[Avrunin et al 1986; Dillon et al. 19881. Binary decision diagrams 03DDs)

have been used to represent a transition relation by a characteristic predicate

which can be combined with a BDD representation of properties to be verified

[Burch et al. 19901. In place of the combinatorial explosion in states in
enumerative approaches, symbolic approaches may suffer an explosion in the

number or size of symbolic descriptions of a system; in the case of BDDs, both

worst-case and average-case sizes are exponential, and most BDD-based tools

rely on careful tuning for each individual problem. The intuitive expectation

that symbolic and enumerative approaches will each be capable of tackling

some problems that the other cannot is backed by the experience of Ratel

et al. [1991], who implemented both approaches to analyzing safety proper-

ties of LUSTRE programs.

An alternative direction is to sacrifice accuracy (further) for performance.

Masticola and Ryder [Masticola 1993; Masticola and Ryder 1991] have devel-

oped a polynomial-time deadlock detection algorithm based on data flow

analysis. In order to achieve this complexity, reachability is safely overesti-

mated at the expense of precision: spurious deadlocks may be reported. Initial

experimental results with some nontoy programs are encouraging, though

the tasking behavior of these programs is simple. It is unlikely that weaker

techniques can replace static concurrency analysis, but as we have discussed

earlier they may be quite useful as a filter applied before more-accurate and

expensive analysis techniques.
Ultimately no global analysis, whether symbolic or enumerative, will be

useful for detecting faults in large-scale software systems. Performance en-

hancements postpone the inevitable. Practical approaches must parcel analy-

sis into tractable subproblems, and preferably into subproblems that mirror

the modular structure of the system under test. Layering and projection [Lam

and Shankar 1984] are often used for decomposing models of communication

protocols along functional lines. CATS does not currently provide automated

support for dividing a system into modules for analysis or composing analysis

results, although a system that uses program scope structure and communi-

cation topology to parcel an analysis automatically is reported in Yeh [1993]
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and Yeh and Young [1991; 1993]; this approach will be incorporated in a

future version of CATS.

7. CIDNCLLJSION

The challenge in designing CATS was to meet and balance multiple and

sometimes conflicting objectives. Any one of these dimensions could have

been improved by sacrificing others. CATS analyzes Ada source code for

exposure to deadlock as well as user-specified properties in the form of

temporal logic assertions and reports potential errors in terms of source-level

sequences of events. Nonetheless, Ada-specific processing and data structures

are (cleanly separated from language-independent aspects throughout the

system, and major parts of both are reusable. CATS is composed of many small

components for flexibility and to support integration with other tools and

techniques. Its performance and capacity are sufficient that we do not feel

compelled to sacrifice this organization.

Experience with CATS, though preliminary, makes us optimistic about the

role static concurrency analysis can play in combination with other tech-

niques for analyzing concurrent software. While the well-known state explo-

sion problem makes global analysis intractable, task interactions in subsys-

tems well beyond the comprehension of unaided programmers can be exhaus-

tively analyzed in a few minutes, and the hierarchical techniques reported in

Yeh [1993] and Yeh and Young [1991; 1993] will permit future versions of

CATS to analyze considerably larger collections of tasks. Our experience

appl:ying CATS to an application built using the Chiron user interface develop-

ment system suggests that analysis of natural modules of real programs can

be bc)th practical and useful.
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