UCI DEPARTMENT OF ORGANIC CHEMISTRY PEER TUTORING
REVIEW SESSION FEEDBACK EVALUATION

<table>
<thead>
<tr>
<th>Quarter: Winter 2019</th>
<th>Date: 2/27/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class: Bess</td>
<td>Midterm 2 Review</td>
</tr>
<tr>
<td>Tutors’ Names:</td>
<td>Emma Wilfong & Cassandra Amezquita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMENTS/ SUGGESTIONS</th>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VERY IMPORTANT!)</td>
<td>Name:</td>
</tr>
</tbody>
</table>

What worked best?

What could be improved?

What would you like to see next time?

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree or Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>This review was interactive and engaging.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The presentation volume was acceptable.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The presentation was visually clear and logically organized.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The review improved/reinforced your understanding of the material.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The quality of the review packet was excellent.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please fill out this evaluation, even if you plan to leave early. Thank you very much.
This page is intentionally left blank on purpose. You can use this page as scratch work if you want.
Midterm 2 Review Packet

Alkene and Alkyne Basics
Rank the following alkenes based on their stability and state whether they are cis, trans, E, or Z.

A
\[
\begin{align*}
\text{H} & \quad \text{CH}_3 \\
\text{Br} & \quad \text{H}
\end{align*}
\]
B
\[
\begin{align*}
\text{HO} & \quad \text{CH}_2\text{CH}_3 \\
\text{H} & \quad \text{CH}_3
\end{align*}
\]
C
\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{OH} \\
\text{H} & \quad \text{CH}_3
\end{align*}
\]
D

Provide the reactant(s) or product(s) for the following reactions.

A:
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{CH}_3
\end{align*}
\]
\[\text{NaNH}_2 (2 \text{ equiv})\]

B:
\[
\begin{align*}
\text{H} & \quad \text{CH}_2\text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{H}
\end{align*}
\]

\[\text{H}_3\text{C} \quad \equiv \quad \text{CH}_2\text{CH}_3\]
Halogenation

Use the mechanism for halogenation to explain why anti and syn products form for this reaction.

Provide the reactant(s) or product(s) for the following reactions.

A:

B:

C:
Dihalogenation

Use the mechanism for halogenation of an alkene to explain why only the anti product forms.

Predict the appropriate reactant(s) or product(s) for the following reactions.

A:

B:

C:

D:
Hydrohalogenation

Draw the mechanism for the following reaction.

\[\text{H}_3\text{C} = \equiv = \text{CH}_3 + \text{Cl}_2, \text{H}_2\text{O} \rightarrow \text{H}_3\text{C} - \text{CH}_2 - \text{CH}_2 - \text{Cl} \]

Predict the reactant(s) or product(s) for the following reactions.

A:

\[\text{H}_3\text{CCH}_2\text{CH}_2\text{H} + \text{Br}_2, \text{H}_2\text{O} \rightarrow \text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{Br} \]

B:

\[\text{H}_3\text{C} - \text{CH}_3 + \text{H} - \text{Br} \rightarrow \text{Cl} - \text{CH}_2 - \text{CH}_2 - \text{Cl} \]
Hydration

Draw the mechanisms for the following reactions.

A:

B:
Provide the reactant(s) or product(s) for the following reactions.

A:

\[
\text{Br} \quad \text{Br}
\]

\[
\text{H}_2\text{C} = \text{CH}\text{H}
\]

\[
\text{H}_2\text{C} = \text{CH}_2
\]

\[
\text{CH}_3\text{CH} = \text{CH}_2
\]

B:

\[
\begin{align*}
&\text{Cyclohexane} \\
&\text{BH}_3 \\
&\text{H}_2\text{O}_2 \text{ OH}
\end{align*}
\]

\[
\begin{align*}
&\text{H}_2\text{O} \\
&\text{H}_2\text{SO}_4
\end{align*}
\]

C:

\[
\begin{align*}
&1. \text{BH}_3 \\
&2. \text{H}_2\text{O}_2 \text{ OH}
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \\
&\text{CH}_3\text{CH}_2\text{CH}_3
\end{align*}
\]