Math 2D - Suggested Homework 2

Peyam Tabrizian

Thursday, April 12, 2018

Note: AP refers to the additional problem(s) on the next page. I know that there are lots of problems, but hopefully most of the ones in chapter 12 are straightforward!

Reading: Sections $10.2-10.3,12.1-12.3$. In 10.2, only focus on arclength this time, in 10.3, ignore the sections on Symmetry and Graphing Polar Curves with Graphing Devices, in 12.2 ignore the section on Applications (unless you're physics-inclined), in 12.3 ignore the section on Direction Angles and Direction Cosines; I won't ask about Work, but it's useful in physics.

- Section 10.2: 41, AP1, AP2
- Section 10.3: 3(b), 5(b)(i), 10, 30, 35, 55, 57, 64
- Section 12.1: 7, 8, 17, 29, 31, 35
- Section 12.2: 5, 19, 23, 26
- Section 12.3: 1, 2, 6, 9, 23(a), 39, 42, 45
(TURN PAGE)

Additional Problems:

(AP1) I thought of that on my flight back to Asia, I think it's very neat!

Consider the circle of radius r centered at $(0,0)$.
(a) Based on Lecture 1, what are the parametric equations of that circle?
(b) Find the slope of the tangent line L_{1} at time t, that is at a point $(x(t), y(t))$
(c) On the other hand, find the slope of the line L_{2} going through $(0,0)$ and $(x(t), y(t))$ (this requires no calculus)
(d) Multiply the slopes you found in (b) and (c). What does that tell you about the lines L_{1} and L_{2}.
(e) Illustrate this with a picture. Does that remind you of something you learned in high school geometry? Maybe it doesn't, but here you proved it, how neat!
(AP2) Show that the length of a curve given in polar coordinates by $r=r(\theta)$ from a to b is given by the formula

$$
\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Hint: Start with the formula for arclength in section 10.3 but with θ instead of t and use $x=r \cos (\theta)$ and $y=r \sin (\theta)$. Remember that r is also a function of θ.

Note: If you're really stuck, look at the section about Arclengths in section 10.4 .

