MOCK MIDTERM

PEYAM RYAN TABRIZIAN

Instructions: This is a mock midterm, designed to give you some practice for the actual midterm. It will be similar in length and in spirit to the actual midterm, but do NOT expect the questions on the midterm to be the same; some will be easier, some will be harder. So please also look at the study guide and the suggested homework for a more complete study experience!

1		15
2		20
3		15
4		20
5		15
6		15
Total		100

[^0]1. (15 points) Find the equation of the tangent line of $r=1+2 \cos (\theta)$ at $\theta=\frac{\pi}{3}$.
2. (20 points, 4 points each) For each of the following surfaces, put the name and draw a small sketch of the figure. It's ok if it's not drawn to scale, but the direction needs to be correct.
(a) $x^{2}+2 y^{2}-3 z^{2}=4$
(b) $x^{2}-y^{2}+z^{2}=0$
(c) $z=3 y^{2}-5 x^{2}$
(d) $2 x^{2}-5 y^{2}-6 z^{2}=-2$
(e) $x=y^{2}+z^{2}$
3. (15 points) Find parametric equations of the tangent line to the curve

$$
\mathbf{r}(t)=\left\langle e^{-t} \cos (t), e^{-t} \sin (t), e^{-t}\right\rangle
$$

at the point $(1,0,1)$.
4. (20 points, 10 points each) Note: Here I put 2 sub-parts just to give you more practice; a more reasonable exam question like that would only have one sub-part.
(a) Find the equation of the plane containing the point $(2,0,-3)$ and the line L with equation:

$$
\begin{aligned}
& x(t)=1+t \\
& y(t)=3+2 t \\
& z(t)=-t
\end{aligned}
$$

(b) Find the equation of the plane containing the lines L_{1} and L_{2} with equations

$$
\begin{aligned}
& x(t)=2-t \\
& y(t)=3+2 t \\
& z(t)=4-3 t
\end{aligned}
$$

and

$$
\begin{aligned}
& x(t)=1+t \\
& y(t)=2+t \\
& z(t)=5-t
\end{aligned}
$$

5. (15 points) Use polar coordinates to find the following limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-\left(x^{2}+y^{2}\right)}-1}{x^{2}+y^{2}}
$$

6. (15 points) Find the equation of the tangent plane to the function $z=\sin (x y)$ at the point $\left(2 \sqrt{\pi}, \frac{1}{2} \sqrt{\pi}\right)$

[^0]: Date: Friday, May 4, 2018.

