## MOCK FINAL

PEYAM RYAN TABRIZIAN

Instructions: This is a mock final, designed to give you some practice for the actual final. Do NOT expect the questions on the final to be the same; some will be easier, but most will be harder. Please also look at the study guide and the suggested homework for a more complete study experience!

| 1 |  | 10 |
| :--- | :--- | ---: |
| 2 |  | 10 |
| 3 |  | 10 |
| 4 |  | 10 |
| 5 |  | 10 |
| 6 |  | 10 |
| 7 |  | 10 |
| 8 |  | 10 |
| 9 |  | 10 |
| 10 |  | 10 |
| Total |  | 100 |

Date: Wednesday, June 13, 2018.

1. (10 points) Use normal vectors to find the line of intersection of the planes $x+2 y+3 z=1$ and $x-y+z=1$.
2. (10 points) Is the following function continuous at $(0,0)$ ?

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+x y+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

3. (10 points) Find an approximate value of

$$
\sqrt{(4.2)^{2}+(0.1)^{2}+(2.9)^{2}}
$$

4. (10 points) Find $\frac{\partial z}{\partial x}$ at $(0,1)$ where $\ln (z)=x y z$
5. (10 points) Show that the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as:

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1
$$

6. (10 points) Find the local maximum and minimum values and saddle points of the function $f(x, y)=x^{4}-2 x^{2}+y^{3}-3 y$.
7. (10 points) Note: This question has two parts to give you extra practice, but a more reasonable question about this on the final would only have one part.
(a) Use Lagrange multipliers to show that among all boxes with fixed volume $V$, the one with the smallest surface area must be a cube.
(b) Use Lagrange multipliers to show that amoung all boxes with fixed surface area $S$, the one with the largest volume must be a cube.
8. (10 points) Calculate

$$
\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin (y) d y d x
$$

9. (10 points) Find the volume of the solid below the function $z=$ $\sqrt{x^{2}+y^{2}}$ and above the ring $1 \leq x^{2}+y^{2} \leq 4$
10. (10 points) Calculate

$$
\iiint_{E} z d x d y d z
$$

where $E$ is the solid in the first octant bounded by the cylinder $y^{2}+$ $z^{2}=9$ and the planes $x=0, y=3 x$, and $z=0$.

