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1. (10 points) Find parametric equations of the tangent line to the fol-
lowing curve at (0, 1,−1), where 0 ≤ t ≤ 2π. Simplify your an-
swer.

r(t) = 〈cos(t), sin(t), cos(2t)〉
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2. (10 points) Find the (smallest) angle between the following two
planes

x+ y = 2 and y − z = 1
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3. (10 points) Find grs, where

g = g(r + s, r − s)

Note: Simplify your answer as much as possible.
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4. (10 points) Assume that c > 0 is a fixed constant. Show that the sum
of the x, y, and z−intercepts (assuming they exist) to any tangent
plane to the following surface is equal to c:

√
x+
√
y +
√
z =
√
c

Note: You only need show your work for one of the intercepts.
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5. (10 points)
(a) (5 points)

Classify the critical point(s) of the function

f(x, y) = x2 + 4y2 − 6x

(b) (5 points) Find the absolute maximum and minimum values of
the function f in (a) in the disk x2 + y2 ≤ 1.
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6. (10 points)

(a) (8 points) Use Lagrange multipliers to find the absolute max-
imum of the following function subject to the following con-
straint, where x, y, z > 0 and c > 0 is a fixed constant.

f(x, y, z) = xyz subject to x+ y + z = c

(b) (2 points) Use (a) to show that for all x, y, z > 0

(xyz)
1
3 ≤ x+ y + z

3
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7. (10 points) Calculate∫ 2

0

∫ 4

y2
y cos(x2)dxdy
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8. (10 points) Find the volume of the solid containing (0, 0, 0) and
between the surfaces

z =
√
3 + x2 + y2 and z = 2

√
x2 + y2

Note: Simplify your final answer as much as possible.
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9. (10 points) Set up, but do NOT evaluate the following integral,
where E is the tetrahedron in the first octant bounded by the planes
2x+ y + z = 4, y = 0, and y = 2x (Here dV is dxdydz but in any
order you prefer) ∫ ∫ ∫

E

xz dV
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10. (10 points) The Grand Finale!!!

(a) (7 points) Using polar coordinates, calculate the following in-
tegral, where a > 0 is a fixed constant∫ ∞

−∞
e−a(x

2)dx

(TURN PAGE)
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(b) (3 points) Use (a) with a = −i and the following facts about
complex numbers to calculate1∫ ∞

−∞
cos(x2)dx and

∫ ∞
−∞

sin(x2)dx

Fact 1: 1√
−i =

1√
2
+ 1√

2
i

Fact 2: eiz = cos(z) + i sin(z) for any z
Fact 3: If a+ bi = c+ di, then a = c and b = d

1Technically the result of (a) doesn’t apply since a isn’t necessarily positive, but sur-
prisingly it gives the correct result!


