MATH 2E REVIEW FOR MIDTERM

The midterm is in class, 50 minutes, 5-6 problems, no notes.

Double Integral.

(1) $\iint_{D} x y d A$, where $D=\left\{(x, y) \mid 0 \leq y \leq 1, y^{2} \leq x \leq y+2\right\}$.
(2) $\iint_{D} \frac{y}{1+x^{2}} d A, D$ is bounded by $y=\sqrt{x}, y=0, x=1$.
(3) $\iint_{D} x d A$, where D is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2$.
Triple Integral.
(1) $\int_{E} y^{2} z^{2} d V, E$ is bounded by the paraboloid $x=1-y^{2}-z^{2}$ and the plane $x=0$.
(2) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$.
(3) Find the volume of the solid given by the region above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$.

Line Integral of scalar functions.

(1) $\int_{C} x d s, C$ is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(2) $\int_{C} y z \cos (x) d s, C: x=t, y=3 \cos (t), z=3 \sin (t), 0 \leq t \leq \pi$.
(3) $\int_{C} y d x+\left(x+y^{2}\right) d y, C$ is the ellipse $4 x^{2}+9 y^{2}=36$, with counterclockwise orientation.

Line Integral of vector fields.

(1) $\int_{C} F \cdot d r$, where $F=\left\langle x y, x^{2}\right\rangle$ and C is given by $\left.r(t)=\langle\sin 9 t),(1+t)\right\rangle$, with $0 \leq t \leq \pi$.
(2) $\int_{C}^{C}\left\langle x y, y^{2}, y z\right\rangle \cdot d r$ where C is the line segment from $(1,0,-1)$ to $(3,4,2)$.
(3) $\int_{C} F \cdot d r$, where $F=\left\langle 4 x^{3} y^{2}-2 x y^{3}, 2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right\rangle$ with C given by $r(t)=\langle t+$ $\sin (\pi t), 2 t+\cos (\pi t)\rangle, 0 \leq t \leq 1$.
(4) $\int_{C} \sqrt{1+x^{3}} d x+2 x y d y$, with C given by the triangle with vertices $(0,0),(1,0)$, and $(1,3)$.

Surfaces.

(1) Find the equation of the tangent plane to the surface $r(u, v)=\langle\sin (u), \cos (u) \sin (v), \sin (v)\rangle$ at the point $u=\frac{\pi}{6}, v=\frac{\pi}{6}$.
(2) Find the area of the part of the surface $x=z^{2}+y$ that lies between the plane $y=0, y=2$, $z=0$, and $z=2$.
(3) Find the area of the part of the paraboloid $y=x^{2}+z^{2}$ that lies within the cylinder $x^{2}+z^{2}=16$.

