MATH 2E REVIEW FOR MIDTERM

The midterm is in class, 50 minutes, 5–6 problems, no notes.

Double Integral.

- (1) $\iint_D xydA$, where $D = \{(x,y) \mid 0 \le y \le 1, y^2 \le x \le y + 2\}$.
- (2) $\iint_{D} \frac{y}{1+x^2} dA$, D is bounded by $y = \sqrt{x}$, y = 0, x = 1.
- (3) $\iint_D x dA$, where D is the region in the first quadrant that lies between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$.

Triple Integral.

- (1) $\int_E y^2 z^2 dV$, E is bounded by the paraboloid $x = 1 y^2 z^2$ and the plane x = 0.
- (2) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} dz dx dy.$
- (3) Find the volume of the solid given by the region above the paraboloid $z = x^2 + y^2$ and below the half-cone $z = \sqrt{x^2 + y^2}$.

Line Integral of scalar functions.

- (1) $\int_C x ds$, C is the arc of the parabola $y = x^2$ from (0,0) to (1,1).
- (2) $\int_C yz \cos(x)ds$, $C: x = t, y = 3\cos(t), z = 3\sin(t), 0 \le t \le \pi$.
- (3) $\int_C^C y dx + (x+y^2) dy$, C is the ellipse $4x^2 + 9y^2 = 36$, with counterclockwise orientation.

Line Integral of vector fields.

- (1) $\int_C F \cdot dr$, where $F = \langle xy, x^2 \rangle$ and C is given by $r(t) = \langle \sin 9t \rangle$, $(1+t) \rangle$, with $0 \le t \le \pi$.
- (2) $\int_C \langle xy, y^2, yz \rangle \cdot dr$ where C is the line segment from (1, 0, -1) to (3, 4, 2).
- (3) $\int_C F \cdot dr$, where $F = \langle 4x^3y^2 2xy^3, 2x^4y 3x^2y^2 + 4y^3 \rangle$ with C given by $r(t) = \langle t + \sin(\pi t), 2t + \cos(\pi t) \rangle$, $0 \le t \le 1$.
- (4) $\int_C \sqrt{1+x^3}dx + 2xydy$, with C given by the triangle with vertices (0,0), (1,0), and (1,3).

Surfaces.

- (1) Find the equation of the tangent plane to the surface $r(u,v) = \langle \sin(u), \cos(u) \sin(v), \sin(v) \rangle$ at the point $u = \frac{\pi}{6}$, $v = \frac{\pi}{6}$.
- (2) Find the area of the part of the surface $x = z^2 + y$ that lies between the plane y = 0, y = 2, z = 0, and z = 2.
- (3) Find the area of the part of the paraboloid $y = x^2 + z^2$ that lies within the cylinder $x^2 + z^2 = 16$.