
MATH 2E REVIEW FOR FINAL

The final is in the usual classroom, Wed, December 12, 1:30pm – 3:30pm, 8–9 problems, covering
Chapter 15 and 16 of Stewart calculus, no notes.

Chapter 15.

(1) Calculate

∫∫
R
yexydA, where R = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}.

(2) Calculate

∫ 1

0

∫ 1

√
y

yex
2

x3
dxdy.

(3) Calculate

∫∫∫
E
zdV , where E is bounded by the planes y = 0, z = 0, x + y = 2 and the

cylinder y2 + z2 = 1 in the first octant.

(4) Calculate

∫∫∫
E
yzdV where E lies above the plane z = 0, below the plane z = y, and inside

the cylinder x2 + y2 = 4.

(5) Calculate

∫∫∫
H
z3
√
x2 + y2 + z2dV , where H is the solid hemisphere that lies above the

xy-plane and has center the origin and radius 1.

(6) Evaluate

∫∫
R

x− y
x+ y

dA where R is the square with vertices (0, 2), (1, 1), (2, 2) and (1, 3).

(7) Find the volume of the region bounded by the surface
√
x+
√
y+
√
z = 1 and the coordinate

planes. Consider the transformation x = u2, y = v2, and z = w2.

(8) Evaluate

∫∫
R
xydA, where R is the square with vertices (0, 0), (1, 1), (2, 0), and (1,−1).

(9) Given a curve r(t) = 〈1 + t, t2, t3〉, find the area of the triangle with vertices r(−1), r(1)
and r(0).

Chapter 16.

(1) Evaluate

∫
C
xds, where C is the arc of the parabola y = x2 from (0, 0) to (1, 1).

(2) Evaluate

∫
C
ydx + (x + y2)dy, C is the ellipse 4x2 + 9y2 = 36 with counter clockwise

orientation.

(3) Evaluate

∫
C
F · dr, where F = 〈√xy, ey, xz〉, C is given by r(t) = 〈t4, t2, t3〉, 0 ≤ t ≤ 1.

(4) Compute curlF where F = 〈ey, xey + ez, yez. Then compute the line integral

∫
C
F · dr

where C is any curve from (0, 2, 0) to (4, 0, 3). Hint: fundamental theorem of line integrals.

(5) Verify Green’s theorem is true for the line integral

∫
C
xy2dx − x2ydy, where C consists of

the parabola y = x2 from (−1, 1) to (1, 1) and the line segment from (1, 1) to (−1, 1).
(6) Find the area of the part of the surface z = x2+2y that lies above the triangle with vertices

(0, 0), (1, 0) and (1, 2).
(7) Find an equation of the tangent plane at the point (4,−2, 1) to the parametric surface S

given by r(u, v) = 〈v2,−uv, u2〉, 0 ≤ u ≤ 3, −3 ≤ v ≤ 3.
1
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(8) Evaluate

∫∫
S
zdS and

∫∫
S
xdS where S is the part of the paraboloid z = x2 + y2 that lies

under the plane z = 4.

(9) Evaluate

∫∫
S
x2z + y2zdS, where S is the part of the plane z = 4 + x + y that lies inside

the cylinder x2 + y2 = 4.

(10) Evaluate

∫∫
S
F · dS where F = 〈xz,−2y, 3x〉 and S is the sphere x2 + y2 + z2 = 4 with

outward orientation.
(11) Verify Stokes’ theorem is true for F = 〈x2, y2, z2〉, where S is the part of the paraboloid

z = 1− x2 − y2 that lies above the xy-plane and S has upward orientation.

(12) Evaluate

∫
C
F ·dr where F = 〈xy, yz, zx〉 and C is the triangle with vertices (1, 0, 0), (0, 1, 0)

and (0, 0, 1) , oriented counter clockwise as viewed from above.

(13) Calculate

∫∫
S
F · dS where F = 〈x3, y3, z3〉 and S is the surface of the solid bounded by

the cylinder x2 + y2 = 1 and the planes z = 0 and z = 2.

(14) Compute the outward flux of F =

〈
x

(x2+y2+z2)
3
2
, y

(x2+y2+z2)
3
2
, z

(x2+y2+z2)
3
2

〉
through the

ellipsoid 4x2 + 9y2 + 6z2 = 36.

(15) Compute

∫
C
F · dr where F =

〈
2x3+2xy2−2y

x2+y2
, 2y

3+2x2y+2x
x2+y2

〉
around any simple closed curve

containing the origin (0, 0).
(16) Find the positively oriented simple closed curve C for which the value of the line integral∫

C
(y3 − y)dx− 2x3dy is a maximum.

Select Solutions.
15.1

∫ 3

0

∫ 2

0
yexydxdy =

∫ 3

0
(exy

∣∣∣∣2
0

)dy

=

∫ 3

0
e2y − 1dy

=
1

2
e2y
∣∣∣∣3
0

− 3

=
1

2
e6 − 7

2
.
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15.2 ∫ 1

0

∫ 1

√
y

yex
2

x3
dxdy =

∫ 1

0

∫ x2

0

yex
2

x3
dydx

=
1

2

∫ 1

0
y2
∣∣∣∣x2
0

ex
2

x3
dx

=
1

2

∫ 1

0
xex

2
dx

=
1

4
ex

2

∣∣∣∣1
0

=
1

4
(e− 1).

15.3
Let D be a quarter of the unit circle in first quadrant of yz plane. Then∫∫

D

∫ 2−y

0
zdxdA =

∫∫
D
z(2− y)dA

Let y = r cos(θ), z = r sin(θ), then dA = rdrdθ so that

2

∫ π/2

0

∫ 1

0
r2 sin(θ)drdθ −

∫ π/2

0

∫ 1

0
r3 sin(θ) cos(θ)drdθ =

2

3
− 1

8

=
13

24
.

15.4
Let D be the upper half of the disk of radius 2 on the xy plane.∫∫

D

∫ y

0
yzdzdA =

1

2

∫∫
D
yz2
∣∣∣∣y
0

dA

=
1

2

∫∫
D
y3dA

=
1

2

∫ 2

0

∫ π

0
r4 sin3(θ)dθdr

=
1

5
(24)

4

3
=

64

15

15.8
The function is odd across the symmetric domain, hence the integral is zero.
If you want to, you could have also done: Let u = y − x and v = y + x. Then x = 1

2(v − u) and

y = 1
2(v + u). Then dxdy = 1

2dudv so∫∫
R
xydA =

1

2

∫ 2

0

∫ 0

−2

v2 − u2

4

=
1

8

∫ 2

0
(2v2 − 8

3
)dv = 0

16.1
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The parametrization is given by r(t) = (t, t2), 0 ≤ t ≤ 1. Then r′(t) = (1, 2t) so ds = ‖r′(t)‖ =√
1 + 4t2. ∫ 1

0
t
√

1 + 4t2dt =
1

12
(5
√

5− 1).

16.2
By Green’s theorem, ∫

C
ydx+ (x+ y2)dy =

∫∫
D

0dA = 0.

16.3
After parametrizing, we get ∫ 1

0
4t6 + 2tet

2
+ 3t9dt = e− 9

70

16.4
curlF = 0, therefore, there is an f such that F = ∇f . Doing the usual steps we find that

f(x, y, z) = xey + yez hence ∫
C
F · = f(4, 0, 3)− f(0, 2, 0) = 2.

16.6
Using the parametrization r(x, y) = (x, y, x2 + 2y), we get ‖rx × ry‖ =

√
5 + 4x2. So∫ 1

0

∫ 2x

0

√
5 + 4x2dydx =

∫ 1

0
2x
√

5 + 4x2dx =
1

6
(27− 5

√
5).

16.7
The tangent vectors are ru = 〈0,−v, 2u〉 and rv = 〈2v,−u, 0〉, the normal vector is ru × rv =

〈2u2, 4uv, 2v2〉. Since u2 = 1 and u ≥ 0, we must have u = 1. If u = 1 the −v = −2 so that v = 2.
So it is at the point u = 1, v = 2. Plugging this in, we get n = 〈2, 8, 8〉, hence the equation is given
by 2(x− 4) + 8(y + 2) + 8(z − 1) = 0.

16.9
Under the parametrization r(x, y) = (x, y, 4 + x + y), we have rx × ry = 〈−1,−1, 1〉 so using

polar coordinates, ∫∫
x2+y2≤4

(x2 + y2)(4 + x+ y)
√

3dA = 32π
√

3

16.11
We want to show

∫
∂S F · dr =

∫∫
S curlF · dS. The boundary is a circle on the x, y plane so that

r(t) = 〈cos(t), sin(t), 0〉. Then∫
∂S
F · dr =

∫ 2π

0
(− cos2(t) sin(t) + sin2(t) cos(t))dt = 0.

By direct computation, we have curlF = 〈0, 0, 0〉.
16.15
There is a typo in the original question. It is fixed in this version. One computes ∂Q

∂x = ∂P
∂y

so that according to Green’s theorem, the line integral would be zero, however, this is not true
because the vector field is not differentiable at (0, 0). It is not even defined there. So we consider
the region bounded by a unit circle and some arbitary closed curve. By reversing orientation, this
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region would enclose a region that does not contain the origin so that Green’s theorem can be
applied. In conclusion, we get ∫

C
F · dr =

∫
x2+y2=1

F · dr.

On the unit circle, one computes that
∫
C F · dr = 4π.

16.16
By Green’s theorem, ∫

C
(y3 − y)dx− 2x3dy =

∫∫
D

1− 6x2 − 3y2dA.

The integral is maximum if we integrate over the region with f ≥ 0 for
∫∫
D fdA. Hence the domain

D should be given by 1 ≥ 6x2 + 3y2 and so the boundary is 1 = 6x2 + 3y2.


