MATH 2E REVIEW FOR FINAL

The final is in the usual classroom, Wed, December 12, 1:30pm - 3:30pm, 8-9 problems, covering Chapter 15 and 16 of Stewart calculus, no notes.

Chapter 15.

(1) Calculate $\iint_{R} y e^{x y} d A$, where $R=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3\}$.
(2) Calculate $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$.
(3) Calculate $\iiint_{E} z d V$, where E is bounded by the planes $y=0, z=0, x+y=2$ and the cylinder $y^{2}+z^{2}=1$ in the first octant.
(4) Calculate $\iiint_{E} y z d V$ where E lies above the plane $z=0$, below the plane $z=y$, and inside the cylinder $x^{2}+y^{2}=4$.
(5) Calculate $\iiint_{H} z^{3} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where H is the solid hemisphere that lies above the $x y$-plane and has center the origin and radius 1 .
(6) Evaluate $\iint_{R} \frac{x-y}{x+y} d A$ where R is the square with vertices $(0,2),(1,1),(2,2)$ and (1,3).
(7) Find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes. Consider the transformation $x=u^{2}, y=v^{2}$, and $z=w^{2}$.
(8) Evaluate $\iint_{R} x y d A$, where R is the square with vertices $(0,0),(1,1),(2,0)$, and $(1,-1)$.
(9) Given a curve $r(t)=\left\langle 1+t, t^{2}, t^{3}\right\rangle$, find the area of the triangle with vertices $r(-1), r(1)$ and $r(0)$.

Chapter 16.

(1) Evaluate $\int_{C} x d s$, where C is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(2) Evaluate $\int_{C}^{C} y d x+\left(x+y^{2}\right) d y, C$ is the ellipse $4 x^{2}+9 y^{2}=36$ with counter clockwise orientation.
(3) Evaluate $\int_{C} F \cdot d r$, where $F=\left\langle\sqrt{x y}, e^{y}, x z\right\rangle, C$ is given by $r(t)=\left\langle t^{4}, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.
(4) Compute curl F where $F=\left\langle e^{y}, x e^{y}+e^{z}, y e^{z}\right.$. Then compute the line integral $\int_{C} F \cdot d r$ where C is any curve from $(0,2,0)$ to $(4,0,3)$. Hint: fundamental theorem of line integrals.
(5) Verify Green's theorem is true for the line integral $\int_{C} x y^{2} d x-x^{2} y d y$, where C consists of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$ and the line segment from $(1,1)$ to $(-1,1)$.
(6) Find the area of the part of the surface $z=x^{2}+2 y$ that lies above the triangle with vertices $(0,0),(1,0)$ and $(1,2)$.
(7) Find an equation of the tangent plane at the point $(4,-2,1)$ to the parametric surface S given by $r(u, v)=\left\langle v^{2},-u v, u^{2}\right\rangle, 0 \leq u \leq 3,-3 \leq v \leq 3$.
(8) Evaluate $\iint_{S} z d S$ and $\iint_{S} x d S$ where S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=4$.
(9) Evaluate $\iint_{S} x^{2} z+y^{2} z d S$, where S is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(10) Evaluate $\iint_{S} F \cdot d S$ where $F=\langle x z,-2 y, 3 x\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=4$ with outward orientation.
(11) Verify Stokes' theorem is true for $F=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$, where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane and S has upward orientation.
(12) Evaluate $\int_{C} F \cdot d r$ where $F=\langle x y, y z, z x\rangle$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$, oriented counter clockwise as viewed from above.
(13) Calculate $\iint_{S} F \cdot d S$ where $F=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$.
(14) Compute the outward flux of $F=\left\langle\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right\rangle$ through the ellipsoid $4 x^{2}+9 y^{2}+6 z^{2}=36$.
(15) Compute $\int_{C} F \cdot d r$ where $F=\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x^{2} y+2 x}{x^{2}+y^{2}}\right\rangle$ around any simple closed curve containing the origin $(0,0)$.
(16) Find the positively oriented simple closed curve C for which the value of the line integral $\int_{C}\left(y^{3}-y\right) d x-2 x^{3} d y$ is a maximum.

Select Solutions.

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{2} y e^{x y} d x d y & =\int_{0}^{3}\left(\left.e^{x y}\right|_{0} ^{2}\right) d y \\
& =\int_{0}^{3} e^{2 y}-1 d y \\
& =\left.\frac{1}{2} e^{2 y}\right|_{0} ^{3}-3 \\
& =\frac{1}{2} e^{6}-\frac{7}{2}
\end{aligned}
$$

15.2

$$
\begin{aligned}
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y & =\int_{0}^{1} \int_{0}^{x^{2}} \frac{y e^{x^{2}}}{x^{3}} d y d x \\
& =\left.\frac{1}{2} \int_{0}^{1} y^{2}\right|_{0} ^{x^{2}} \frac{e^{x^{2}}}{x^{3}} d x \\
& =\frac{1}{2} \int_{0}^{1} x e^{x^{2}} d x \\
& =\left.\frac{1}{4} e^{x^{2}}\right|_{0} ^{1} \\
& =\frac{1}{4}(e-1) .
\end{aligned}
$$

15.3

Let D be a quarter of the unit circle in first quadrant of $y z$ plane. Then

$$
\iint_{D} \int_{0}^{2-y} z d x d A=\iint_{D} z(2-y) d A
$$

Let $y=r \cos (\theta), z=r \sin (\theta)$, then $d A=r d r d \theta$ so that

$$
\begin{aligned}
2 \int_{0}^{\pi / 2} \int_{0}^{1} r^{2} \sin (\theta) d r d \theta-\int_{0}^{\pi / 2} \int_{0}^{1} r^{3} \sin (\theta) \cos (\theta) d r d \theta & =\frac{2}{3}-\frac{1}{8} \\
& =\frac{13}{24}
\end{aligned}
$$

15.4

Let D be the upper half of the disk of radius 2 on the $x y$ plane.

$$
\begin{aligned}
\iint_{D} \int_{0}^{y} y z d z d A & =\left.\frac{1}{2} \iint_{D} y z^{2}\right|_{0} ^{y} d A \\
& =\frac{1}{2} \iint_{D} y^{3} d A \\
& =\frac{1}{2} \int_{0}^{2} \int_{0}^{\pi} r^{4} \sin ^{3}(\theta) d \theta d r \\
& =\frac{1}{5}\left(2^{4}\right) \frac{4}{3}=\frac{64}{15}
\end{aligned}
$$

15.8

The function is odd across the symmetric domain, hence the integral is zero.
If you want to, you could have also done: Let $u=y-x$ and $v=y+x$. Then $x=\frac{1}{2}(v-u)$ and $y=\frac{1}{2}(v+u)$. Then $d x d y=\frac{1}{2} d u d v$ so

$$
\begin{aligned}
\iint_{R} x y d A & =\frac{1}{2} \int_{0}^{2} \int_{-2}^{0} \frac{v^{2}-u^{2}}{4} \\
& =\frac{1}{8} \int_{0}^{2}\left(2 v^{2}-\frac{8}{3}\right) d v=0
\end{aligned}
$$

16.1

The parametrization is given by $r(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$. Then $r^{\prime}(t)=(1,2 t)$ so $d s=\left\|r^{\prime}(t)\right\|=$ $\sqrt{1+4 t^{2}}$.

$$
\int_{0}^{1} t \sqrt{1+4 t^{2}} d t=\frac{1}{12}(5 \sqrt{5}-1)
$$

16.2

By Green's theorem,

$$
\int_{C} y d x+\left(x+y^{2}\right) d y=\iint_{D} 0 d A=0
$$

16.3

After parametrizing, we get

$$
\int_{0}^{1} 4 t^{6}+2 t e^{t^{2}}+3 t^{9} d t=e-\frac{9}{70}
$$

16.4
$\operatorname{curl} F=0$, therefore, there is an f such that $F=\nabla f$. Doing the usual steps we find that $f(x, y, z)=x e^{y}+y e^{z}$ hence

$$
\int_{C} F \cdot=f(4,0,3)-f(0,2,0)=2
$$

16.6

Using the parametrization $r(x, y)=\left(x, y, x^{2}+2 y\right)$, we get $\left\|r_{x} \times r_{y}\right\|=\sqrt{5+4 x^{2}}$. So

$$
\int_{0}^{1} \int_{0}^{2 x} \sqrt{5+4 x^{2}} d y d x=\int_{0}^{1} 2 x \sqrt{5+4 x^{2}} d x=\frac{1}{6}(27-5 \sqrt{5})
$$

16.7

The tangent vectors are $r_{u}=\langle 0,-v, 2 u\rangle$ and $r_{v}=\langle 2 v,-u, 0\rangle$, the normal vector is $r_{u} \times r_{v}=$ $\left\langle 2 u^{2}, 4 u v, 2 v^{2}\right\rangle$. Since $u^{2}=1$ and $u \geq 0$, we must have $u=1$. If $u=1$ the $-v=-2$ so that $v=2$. So it is at the point $u=1, v=2$. Plugging this in, we get $n=\langle 2,8,8\rangle$, hence the equation is given by $2(x-4)+8(y+2)+8(z-1)=0$.
16.9

Under the parametrization $r(x, y)=(x, y, 4+x+y)$, we have $r_{x} \times r_{y}=\langle-1,-1,1\rangle$ so using polar coordinates,

$$
\iint_{x^{2}+y^{2} \leq 4}\left(x^{2}+y^{2}\right)(4+x+y) \sqrt{3} d A=32 \pi \sqrt{3}
$$

16.11

We want to show $\int_{\partial S} F \cdot d r=\iint_{S} \operatorname{curl} F \cdot d S$. The boundary is a circle on the x, y plane so that $r(t)=\langle\cos (t), \sin (t), 0\rangle$. Then

$$
\int_{\partial S} F \cdot d r=\int_{0}^{2 \pi}\left(-\cos ^{2}(t) \sin (t)+\sin ^{2}(t) \cos (t)\right) d t=0
$$

By direct computation, we have $\operatorname{curl} F=\langle 0,0,0\rangle$.
16.15

There is a typo in the original question. It is fixed in this version. One computes $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ so that according to Green's theorem, the line integral would be zero, however, this is not true because the vector field is not differentiable at $(0,0)$. It is not even defined there. So we consider the region bounded by a unit circle and some arbitary closed curve. By reversing orientation, this
region would enclose a region that does not contain the origin so that Green's theorem can be applied. In conclusion, we get

$$
\int_{C} F \cdot d r=\int_{x^{2}+y^{2}=1} F \cdot d r .
$$

On the unit circle, one computes that $\int_{C} F \cdot d r=4 \pi$.
16.16

By Green's theorem,

$$
\int_{C}\left(y^{3}-y\right) d x-2 x^{3} d y=\iint_{D} 1-6 x^{2}-3 y^{2} d A
$$

The integral is maximum if we integrate over the region with $f \geq 0$ for $\iint_{D} f d A$. Hence the domain D should be given by $1 \geq 6 x^{2}+3 y^{2}$ and so the boundary is $1=6 x^{2}+3 y^{2}$.

