MATH 2E REVIEW FOR FINAL

The final is in the usual classroom, Wed, December 12, 1:30pm - 3:30pm, 8-9 problems, covering Chapter 15 and 16 of Stewart calculus, no notes.

Chapter 15.

(1) Calculate $\iint_{R} y e^{x y} d A$, where $R=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 3\}$.
(2) Calculate $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$.
(3) Calculate $\iiint_{E} z d V$, where E is bounded by the planes $y=0, z=0, x+y=2$ and the cylinder $y^{2}+z^{2}=1$ in the first octant.
(4) Calculate $\iiint_{E} y z d V$ where E lies above the plane $z=0$, below the plane $z=y$, and inside the cylinder $x^{2}+y^{2}=4$.
(5) Calculate $\iiint_{H} z^{3} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where H is the solid hemisphere that lies above the $x y$-plane and has center the origin and radius 1 .
(6) Evaluate $\iint_{R} \frac{x-y}{x+y} d A$ where R is the square with vertices $(0,2),(1,1),(2,2)$ and (1,3).
(7) Find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes. Consider the transformation $x=u^{2}, y=v^{2}$, and $z=w^{2}$.
(8) Evaluate $\iint_{R} x y d A$, where R is the square with vertices $(0,0),(1,1),(2,0)$, and $(1,-1)$.
(9) Given a curve $r(t)=\left\langle 1+t, t^{2}, t^{3}\right\rangle$, find the area of the triangle with vertices $r(-1), r(1)$ and $r(0)$.

Chapter 16.

(1) Evaluate $\int_{C} x d s$, where C is the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(2) Evaluate $\int_{C}^{C} y d x+\left(x+y^{2}\right) d y, C$ is the ellipse $4 x^{2}+9 y^{2}=36$ with counter clockwise orientation.
(3) Evaluate $\int_{C} F \cdot d r$, where $F=\left\langle\sqrt{x y}, e^{y}, x z\right\rangle, C$ is given by $r(t)=\left\langle t^{4}, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.
(4) Compute curl F where $F=\left\langle e^{y}, x e^{y}+e^{z}, y e^{z}\right.$. Then compute the line integral $\int_{C} F \cdot d r$ where C is any curve from $(0,2,0)$ to $(4,0,3)$. Hint: fundamental theorem of line integrals.
(5) Verify Green's theorem is true for the line integral $\int_{C} x y^{2} d x-x^{2} y d y$, where C consists of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$ and the line segment from $(1,1)$ to $(-1,1)$.
(6) Find the area of the part of the surface $z=x^{2}+2 y$ that lies above the triangle with vertices $(0,0),(1,0)$ and $(1,2)$.
(7) Find an equation of the tangent plane at the point $(4,-2,1)$ to the parametric surface S given by $r(u, v)=\left\langle v^{2},-u v, u^{2}\right\rangle, 0 \leq u \leq 3,-3 \leq v \leq 3$.
(8) Evaluate $\iint_{S} z d S$ and $\iint_{S} x d S$ where S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=4$.
(9) Evaluate $\iint_{S} x^{2} z+y^{2} z d S$, where S is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(10) Evaluate $\iint_{S} F \cdot d S$ where $F=\langle x z,-2 y, 3 x\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=4$ with outward orientation.
(11) Verify Stokes' theorem is true for $F=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$, where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane and S has upward orientation.
(12) Evaluate $\int_{C} F \cdot d r$ where $F=\langle x y, y z, z x\rangle$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$, oriented counter clockwise as viewed from above.
(13) Calculate $\iint_{S_{2}} F \cdot d S$ where $F=\left\langle x^{3}, y^{3}, z^{3}\right\rangle$ and S is the surface of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2$.
(14) Compute the outward flux of $F=\left\langle\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right\rangle$ through the ellipsoid $4 x^{2}+9 y^{2}+6 z^{2}=36$.
(15) Compute $\int_{C} F \cdot d r$ where $F=\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x y+2 x}{x^{2}+y^{2}}\right\rangle$ around any simple closed curve containing the origin $(0,0)$.
(16) Find the positively oriented simple closed curve C for which the value of the line integral $\int_{C}\left(y^{3}-y\right) d x-2 x^{3} d y$ is a maximum.

