
MATH 54 − HINTS − BANK

PEYAM RYAN TABRIZIAN

This document contains hints to the following Math 54 problems I’ve compiled
in the past. The problems in bold have complete solutions:

Section Problems
1.1 15, 20, 28
1.2 5, 11, 15, 23, 26, 30
1.3 7, 11, 15, 22, 25
1.4 11, 17, 18, 29
1.5 14, 24, 29
1.7 1, 5, 11, 17, 21, 23, 33, 36
1.8 3, 9, 15, 19, 21, 33, 36
1.9 9, 15, 23, 24
2.1 11, 15, 23, 27
2.2 1, 9, 13, 21, 38
2.3 11, 13, 14, 19, 30
2.6 3, 5, 7, 9, 21, 23
2.7 3, 5, 9, 16, 21, 23, 24
3.1 9, 19, 21, 41
3.2 11, 19, 21, 27, 31, 33, 34, 35
3.3 7, 21, 32
4.1 13(c), 24, 32
4.2 7, 23, 25
4.3 7, 13, 21, 32
4.4 15, 19, 27
4.5 3, 7, 11, 26, 27
4.6 1, 5, 9, 15, 22, 33
4.7 3, 5, 9, 11, 13
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Section Problems
5.1 1, 5, 13, 17, 21
5.2 11, 15, 19, 21
5.3 1, 3, 5, 7, 11, 17, 21
5.4 3, 7, 15
5.5 1, 3, 7, 13, 15
6.1 7, 19, 22, 24
6.2 7, 9, 13, 15, 23
6.3 Facts, 11, 21
6.4 9, 17
6.5 9, 11, 17
6.7 1, 5, 7, 11, 16
7.1 9, 17, 25

Section Problems
DE 4.2 27, 34
DE 4.3 21, 29b
DE 4.4 3, 5, 7, 13, 21, 27, 31
DE 4.5 1b, 3, 5, 9 21, 33
DE 4.6 Facts, 20
DE 6.1 3, 7, 17, 19, 23, 27
DE 6.2 3, 7, 15, 20, 25
DE 9.1 7, 10, 13
DE 9.4 3, 7, 13, 16, 19, 23, 27
DE 9.5 17, 21, 31, 35
DE 9.6 19
DE 9.7 3, 9, 13, 15
DE 10.2 1, 3, 5, 8, 12, 21, 23
DE 10.3 1, 5, 7, 11, 17, 19, 26, 27
DE 10.4 1, 3, 5, 7, 9, 11, 13, 17, 19
DE 10.5 7, 9, 15, 17
DE 10.6 Facts
DE 10.7 Facts

1. Section 1.1: Systems of linear equations

1.1.15. All you have to do are row-reductions until it is easier to see whether the
equation has a solution or not. In particular, if one of the rows is of the form:[

0 0 0 0 b
]

then the system has no solution!

1.1.20. Solve the system as if h was a number! It might be useful to divide the
second row by −2. Again, use the fact that if one of the rows is of the form:[

0 0 0 0 b
]
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then the system has no solution!

The answer is h 6= −4

1.1.28. One way to do this is to start with the augmented matrix:1 0 0 3
0 1 0 −2
0 0 1 −1


And, for example, multiply each row by 2, or add the third row to the second, or

interchange the first and second row. There’s a whole world of different possibilities;
just make sure not to destroy the system by either making it inconsistent, or by
adding infinite solutions.

Section 1.2: Row Reduction and Echelon Forms

1.2.5. Just argue by the number of pivots! There are three possible echelon forms
here: [

0 0
0 0

]
,

[
◦ ?
0 0

]
,

[
◦ ?
0 ◦

]
Where ◦ stands for ‘pivot,’ and ? is any number (could be zero or not).

1.2.11. Row-reduce the matrix (we divided the second row by 3, the third row by
2; and then we subtracted the first row from the second row and the third row):3 −2 4 0

9 −6 12 0
6 −4 8 0

 −→
3 −2 4 0

3 −2 4 0
3 −2 4 0


−→

3 −2 4 0
0 0 0 0
0 0 0 0


In terms of equations, this becomes 3x1−2x2 +4x3 = 0, that is 3x1 = 2x2−4x3,

hence x1 = 2
3x2 −

4
3x3. Moreover x2 and x3 are free, and therefore the general

solution to the system is:


x1 = 2

3x2 −
4
3x3

x2 free

x3 free

Note: Try to simplify things whenever you can. For example, in the matrix,
divide the second row by 3 and the third row by 2, and then start your row-reduction
process!
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1.2.15, 1.2.23, 1.2.26. In each of the problems, the following fact will help you
solve the problem:

Fact: A system is consistent if and only if in the row echelon form of the
augmented matrix there is no row of the form[

0 0 0 · · · b
]

Where b 6= 0.
For 1.2.23, 1.2.26, it’ll help to draw a picture of what the matrix in question

looks like.

For 1.2.26, try out a concrete example to convince you of this! Can you solve
for z? If yes, can you solve for y? Finally, can you solve for x?

1.2.30. Underdetermined means ’fewer equations than unknowns’. Find two equa-
tions in three unknowns which give you a contradiction, such as 0 = 1. The easiest
way to do this is to write one equation, and then rewrite the same equation, but
with a different number on the right.

Section 1.3: Vector equations

1.3.7. Here’s a cool trick! Any vector in R2 is a linear combination of two linearly
independent vectors! So the answer is immediately yes

1.3.11, 1.3.15. Determine if/when the equation Ax = b has a solution or not
(where A is the matrix whose columns are the ai)

1.3.22. All you have to find is an inconsistent system! For example:

A =

1 1 1
1 1 1
1 1 1

 , and b =

1
0
0


1.3.25. Careful! A set is not the same as the span of a set. In particular, b is not
in {a1,a2,a3} because it is not equal to either of those vectors. However, it might
be in the span of those 3 vectors! Also, for (c), remember that a1 is always in the
span of {a1,a2,a3}.

Section 1.4: The matrix equation Ax = b

1.4.11. The augmented matrix becomes: 1 3 −4 −2
1 5 2 4
−3 −7 6 12


Now row-reduce: Subtract the first row from the second, and add 3 times the

first row to the third:
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1 3 −4 −2
0 2 6 6
0 2 −6 6


Divide the second row and the third row by 2:

1 3 −4 −2
0 1 3 3
0 1 −3 3


Subtract the second row from the third:

1 3 −4 −2
0 1 3 3
0 0 −6 0


Divide the third row by −6:

1 3 −4 −2
0 1 3 3
0 0 1 0


Add 4 times the third row to the first, and subtract 3 times the third row from

the second:

1 3 0 −2
0 1 0 3
0 0 1 0


Subtract 3 times the second row from the first:

1 0 0 −11
0 1 0 3
0 0 1 0


This gives us:


x1 = −11

x2 = 3

x3 = 0

That is:

x =

x1x2
x3

 =

−11
3
0


1.4.17, 1.4.18. Row-reduce! Also, use Theorem 4(d) on page 45.
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1.4.29. The easiest way to do this is find a matrix in row-echelon form that has this
property, and then just interchange two rows! For example, the following matrix
works: 0 0 1

0 1 0
1 0 0



Section 1.5: Solution sets of linear systems

1.5.14. The line that goes through


0
3
2
0

 and with ‘slope’


5
−2
5
1


1.5.24.

(a) F (x = 0 is always a solution)
(b) F (I leave it up to you to come up with such an equation)
(c) T
(d) T (Because then b = A0 = 0)

1.5.29. Nontrivial means x 6= 0. The best way to do this is to draw a picture of
what the reduced-echelon form of the matrix looks like! Also, for (b), if one of the
rows of A is a row of zeros, then the equation Ax = b has no solution (for some b).

Section 1.7: Linear independence

1.7.1, 1.7.5. Row-reduce (after putting everything in a matrix, if necessary). If
you get n pivots, then the set is linearly independent. Else, it’s linearly dependent.

1.7.5. We want to solve the system Ax = 0. The augmented matrix becomes:
0 −3 9 0
2 1 −7 0
−1 4 −5 0
1 −4 −2 0


Row-reducing until the matrix is in REF (DO IT!), we get:1 −4 −2 0

0 1 −3 0
0 0 1 0


Fast way: There are 3 pivots in the coefficient matrix, and hence as many pivots

as columns (in the coefficient matrix), and hence the vectors are linearly independent .

Slow way: Row-reducing further until we get the RREF:
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
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


But this implies that x = 0, y = 0, z = 0, and hence x =

0
0
0

.

Therefore, the equation Ax = 0 has only the trivial solution, and therefore the

vectors are linearly independent

Note: It’s VERY important that you row-reduce until you get the REF. Oth-
erwise you CANNOT conclude how many pivots (or free variables) there are.
There’s no way around this, any other way is considered incorrect!

1.7.11. Row-reduce!

1.7.17. A set with the zero-vector is always linearly dependent.

1.7.21.

(a) F (the equation Ax = 0 always has the trivial solution, no matter what
the columns of A look like!)

(b) F (for example, S =


1

0
0

 ,
0

1
0

 ,
0

2
0

 doesn’t satisfy this! The correct

statement should be: there is some vector such that · · · )
(c) T (in other words, 5 vectors in R4 are linearly dependent)
(d) T (otherwise the set would be linearly independent)

1.7.23. This matrix can only have one or no pivots (in the last case, the matrix is
the zero-matrix). This is because if the matrix has 2 pivots, the columns would be
linearly independent.

1.7.33. Remember that a set is linearly dependent if there’s a relationship between
the vectors in the set. Also, a set with the zero vector is always linearly dependent.

1.7.36. FALSE (give me explicit examples of vectors such that v1 = v2 and v3

linearly independent from v1 and v2! The point is for linear independence, you
have to consider the set as a whole!)

Section 1.8: Introduction to Linear Transformations

1.8.3, 1.8.9. Just solve the equation Ax = b, where in 1.8.9, b is the zero vector!

1.8.15. T is just reflection across the line y = x.
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1.8.19. Use the fact that:

[
5
−3

]
= 5e1 − 3e2

1.8.21.

(a) T (it’s a function from Rn to Rm with special properties)
(b) F (the domain is R5)
(c) T
(d) T (for NOW; in Math 110 you’ll see some linear transformations which

don’t have matrices)
(e) T (to get additivity, take c1 = c2 = 1, to get scalar multiplication, take

c1 = c, c2 = 0)

1.8.33. What is T (0, 0, 0)?

1.8.36. x = c1u + c2v

Section 1.9: The matrix of a linear transformation

For all of those questions, all you need to find is T (e1), T (e2), · · · and group the
terms in a matrix!

1.9.9. All you need to determine is what happens to (1, 0) and (0, 1):

If you reflect the point (1, 0) through the x1−axis, then you get (1, 0) (nothing
happens), and if you rotate (1, 0) by −π2 radians, you get (0,−1), and hence:

T

[
1
0

]
=

[
0
−1

]
If you reflect the point (0, 1) through the x1−axis, then you get (0,−1), and if

you rotate (0,−1) by −π2 radians, you get (−1, 0), and hence:

T

[
0
1

]
=

[
−1
0

]
And putting the two columns together, you get that the matrix of T is A, where:

A =

[
0 −1
−1 0

]

1.9.15. The first column is given by T (1, 0, 0), etc.
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1.9.23.

(a) T (in other words, if you know T (e1), T (e2), · · · , T (en), you know T )
(b) T (see example 3)
(c) F (the composition of two linear transformations is a linear transformation,

see chapter 4)
(d) F (onto means every vector in Rm is in the image of T )

(e) F (let A =

1 0
0 1
0 0

, then the columns of A are linearly independent, and

hence T is one-to-one by theorem 12b)

1.9.24.

(a) F
(b) T
(c) T
(d) T
(e) F

Section 2.1: Matrix operations

Remember the rule (m× n) • (n× p) = (m× p).

2.1.11. D = 2I works!

2.1.15.

(a) F (oh, life would be awesome if this was true! But a1a2 doesn’t even make
sense!)

(b) F (the columns of A using weights from the column of B)
(c) T
(d) T
(e) F (in the reverse order, (AB)T = BTAT )

2.1.23. Multiply the equation Ax = 0 by C.

2.1.27. First figure out the size of your matrix.

Section 2.2: The inverse of a matrix

2.2.1. Use theorem 4.

2.2.9. All statements are true, except for (b), because (AB)−1 = B−1A−1 and (c)

(should be ad− bc 6= 0, take A =

[
1 1
0 0

]
as an example)
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2.2.13. Suppose AB = AC, where A is invertible. Then, multiplying both sides
to the left by A−1, we get:

A−1(AB) =A−1(AC)

(A−1A)B =(A−1A)C (by associativity)

IB =IC (because A−1A = I, by definition of inverse)

B =C (because ID = I for every matrix D, by definition of I)

And therefore B = C.

The result is not true in general, because if you take A = O (the zero-matrix),
then AB = OB = O, and AC = OC = O, and hence AB = AC, but B 6= C.

2.2.21. In other words, you have to show that the only solution to Ax = 0 is x = 0
(think about this in terms of linear combinations of the columns of A). For that,
multiply the equation Ax = 0 by A−1.

2.2.38.

D =


1 0
0 0
0 0
0 1


The best way to get D is by using the equation AD = I2 and guessing!

C cannot exist, because otherwise A would be invertible, and in particular its
columns would be linearly independent, which is bogus!

Section 2.3: Characterizations of invertible matrices

For the first few problems, row-reduction is the key!

2.3.11. Just look at theorem 8. If one of those statements holds, then all of them
hold!

2.3.13. Only if all the entries on the diagonal are nonzero! See theorem 8(c)

2.3.14. No! See theorem 8(h)

2.3.19. It has at least one solution for every b (in fact, exactly one solution), see
Theorem 8(g).

2.3.30. Since Tx = Ax is not one-to-one, by condition (f) of the Invertible Ma-
trix Theorem, A is not invertible. Hence by condition (i) of the Invertible matrix
theorem, Tx = Ax cannot map Rn onto Rn.

Note: This is one of the special features of Rn and about linear transformations!
You cannot expect this result to be true in general!
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Section 2.6: Subspaces of Rn

2.6.3. Not closed under addition

2.6.5. One way to do this is to group the vectors v1 and v2 together in a matrix
A, and solve Ax = w.

2.6.7.

(a) 3
(b) Infinitely many of them! (but in a sense, you’ll see that Col(A) is a 2 or 3

dimensional space).
(c) Solve Ax = p

2.6.9. Just check whether Ap = 0 or not.

2.6.21. All statements are True, EXCEPT (c) (should be Rn)! Notice that in
particular (a) is true! The book is just being picky about this, even though it
omitted the word ’for each’, the statement still remains true (the words ’for each’
here are implied)

2.6.23. To find Nul(A), solve Ax = 0 using the row-echelon form. To find Col(A),
notice that the first two columns of A are pivot columns. In particular, a basis for
Col(A) is the set of the first two columns of the original matrix A.

Section 2.7: Dimension and Rank

2.7.3, 2.7.5. Find the coefficients of x as a linear combination of b1 and b2.

2.7.9. To find Nul(A), solve Ax = 0 using the row-echelon form. To find Col(A),
locate the pivot columns of A. In particular, a basis for Col(A) is the set of the
pivot columns of the original matrix A.

2.7.16, 2.7.21. Use the fact that dim(Nul(A)) + rank(A) = n

2.7.23. For example:

A =

1 0 0 0
0 1 0 0
0 0 0 0


2.7.24. For example:

A =

1 1 1 0
0 0 0 0
0 0 0 0


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Section 3.1: Introduction to determinants

Always try to look for a row/column full of zeros! May Bomberman be with you
:)

3.1.9. Expanding along the third row, and then along the first row, we get:

∣∣∣∣∣∣∣∣
6 0 0 5
1 7 2 −5
2 0 0 0
8 3 1 8

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
0 0 5
7 2 −5
3 1 8

∣∣∣∣∣∣ = (2)(5)

∣∣∣∣ 7 2
3 1

∣∣∣∣ = 10(7− 6) = 10

3.1.19, 3.1.21. What you’re asked to do is: compute the determinants of the first
matrix and of the second matrix and compare them. Also, explain how to obtain
the second matrix from the first using a row-operation!

3.1.41. The area of the parallelogram always equals to the determinant of [u v].
Use the formula: Area of parallelogram = base × height. The two areas should be
the same (by the way, this fact is a very simplified version of Cavalieri’s principle)

Section 3.2: Properties of determinants

3.2.11. What they mean is: First calculate the determinant by expanding along
the second column, and then evaluate the resulting sub-determinants using row-
reduction!

3.2.19. DO NOT EVALUATE THE DETERMINANT! Use row-reduction!
In particular, notice that to obtain the determinant in the problem, all you have
to do is multiply the second row of the original matrix by 2, and then add the first
row to the second row! Hence, the answer should be 2× 7 = 14.

3.2.21. A matrix A is invertible if and only if det(A) 6= 0.
Note: From now on, I’m only giving the answer to the T/F questions! I leave

it up to you to explain why the result is true or false.

3.2.27.

(a) T ? I think the book uses the term ‘row-replacement’ to mean: “ add k
times a row to another row”.

(b) F (not true for any echelon form, what about the reduced row-echelon
form?)

(c) T
(d) F

3.2.31, 3.2.33, 3.2.34, 3.2.35. All you need to use is the fact that det(AB) =
det(A)det(B).
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3.2.34.

det
(
PAP−1

)
= det(P ) det(A) det

(
P−1

)
=����det(P ) det(A)

1

����det(P )
= det(A)

Section 3.3: Cramer’s rule, volume, and linear transformations

For all those problems, all you need to do is imitate the techniques presented in
the book.

3.3.7. The system has a unique solution iff det(A) 6= 0 (because that’s equivalent
to saying that A is invertible)

3.3.21. The only thing that makes this difficult is that the parallelogram is not
centered at (0, 0). To make it centered at (0, 0), just shift it to the right by one
unit! The area stays the same anyway!

3.3.32.

(a) Define T by T (ei) = vi. Notice that this is enough to define T , because
{e1, e2, e3} is a basis for R3.

(b) Now just use V ol(S′) = det(T )V ol(S). The volume of S is 1
3×

1
2 (1×1)×1 =

1
6 , because all of its three lengths are equal to 1. As for det(T ), that’s just
the determinant of the matrix whose columns are v1, v2, v3.

Section 4.1: Vector spaces and subspaces

Remember the three techniques of showing whether something is a vector space
or not!

(1) Trick 1: Show it is not a vector space by finding an explicit property which
does not hold

(2) Trick 2: Show it is a subspace of a (known) vector space
(3) Trick 3: Express it in the form Span of some vectors.

4.1.13(c). For (c), to show w is in the subspace or not, all you have to show is
whether the system Ax = w is consistent or not (where A is the matrix whose
columns are the vi).

4.1.24.

(a) T (this is important to remember!!! A vector isn’t a list of numbers any
more, it could be anything, even a function!)

(b) T
(c) T (of itself!)
(d) F
(e) T (again, the textbook might give you a different answer, but I agree that

this is weirdly phrased! What they mean is: If u,v is in H, then u + v is
in H).
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4.1.32. This is a bit tricky! Remember that H∩K is the set of vectors that is both
in H and in K. Here’s the proof that H ∩ K is closed under addition (hopefully
that’ll inspire you to do the rest):

Suppose u and v are in H ∩K. Then u and v are in H, so is u + v (since H
is a subspace). Also, since u and v are in K, so is u + v (since K is a subspace).
Hence u + v is both in H and K, hence u + v is in H ∩K.

As for the fact that the union of two subspaces is not a subspace, take H to be
the x−axis, and K to be the y− axis. Then (1, 0) and (0, 1) are both in the union,
but (1, 1) is not.

Section 4.2: Nullspaces, Column Spaces, and Linear Transformations

This is very similar to what you’ve been doing in sections 2.8 and 2.9. See also
the tricks I gave in the beginning of section 4.1.

4.2.7. It’s not a subspace of R3 because 0 =

0
0
0

 is not in it, since 0+0+0 = 0 6= 2.

4.2.23. Is w a linear combo of the columns of A? Is Aw = 0?

4.2.25.

(a) T
(b) F
(c) T
(d) T (the book might say F, if it is pedantic about the fact that it didn’t say

‘for all b’)
(e) T
(f) T

Section 4.3: Linearly independent sets, bases

Remember that a basis is a linearly independent set which spans the whole space!
Equivalently, as set is a basis if the corresponding matrix A is invertible.

4.3.7. It cannot span R3 because we have 2 vectors in R3 (and hence it cannot be
a basis). To check linear independence, just ask yourself: is the second vector a
multiple of the first?

4.3.13. To find Col(A), see where the pivot columns are, and then go back to A
and choose precisely those columns (here the first and second column of A)
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4.3.21.

(a) FALSE (consider V = R2, then

{[
1
1

]}
is linearly independent).

(b) FALSE ({b1, · · · ,bp} could be linearly dependent!)

(c) TRUE (by the Invertible Matrix Theorem)

(d) FALSE (it’s the smallest spanning set, see page 200)

(e) FALSE (row-operations preserve linear independence relationships among
the columns, see page 199)

4.3.32. I love this problem!!! We are given that there exist c1, ·, cp, not all 0, such
that:

c1T (v1) + · · ·+ cpT (vp) = 0

By linearity of T , this becomes:

T (c1v1 + · · ·+ cpvp) = 0 = T (0)

But because T is one-to-one, this implies:

c1v1 + · · ·+ cpvp = 0

Since the c1, ·, cp are not all 0, this shows that the vectors v1, ·, vp are linearly
dependent.

Make sure to understand every step of this (and enjoy how near this is!)

Section 4.4: Coordinate Systems

Remember: It’s easier to figure out x once we know [x]B than the reverse. Also,
remember that the change of coordinates matrix is just the matrix whose columns
are the elements in B.

It takes a code as its input and tells you which vector corresponds to that code.
Its inverse matrix does what you usually want: It produces the coordinates of x

4.4.15.

(a) T
(b) F (it’s x = PB [x]B )
(c) F (it’s P2 and R3 which are isomorphic)

4.4.19. This is also kind of cute. Let S = {v1, · · · , vn}

Span:

Let x be an arbitrary vector in V . Then we know that x has a representation as
a linear combination of elements of S, that is, there exist c1, · · · , cn such that:
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x = c1v1 + · · ·+ cnvn

And therefore x is in the span of S, and therefore S spans V (since x was arbi-
trary in V ).

Linear independence:

Suppose there exist constants c1, · · · , cn such that:

c1v1 + · · ·+ cnvn = 0

However, notice that we can write 0 = 0v1 + · · · + 0vn, and therefore we found
two ways of writing 0 as a linear combinations of elements in S. But since there is
only one way of writing 0 as a linear combination of elements in S (by assumption),
it follows that the ci must all equal to 0. Therefore c1 = · · · = cn = 0, and therefore
S is also linearly independent.

4.4.27. Use the basis B =
{

1, t, t2, t3
}

, and compute the coordinates of the 4
polynomials. Then the polynomials are linearly independent if and only if their
corresponding vectors are linearly independent!

Section 4.5: The dimension of a vector space

4.5.3, 4.5.7, 4.5.11. First express the subspace as the span of some vectors, and
then use the following useful trick:

Useful trick: To find a basis of a collection of vectors, form the matrix A whose
columns are the vectors, and all you need to do is to find a basis for Col(A). In
particular, the dimension of the subspace is the dimension of Col(A) (which is the
number of pivots).

4.5.26. Suppose B = {v1,v2, · · ·vn} is a basis for H. What two things can you
say about B? Then use the Basis theorem (Theorem 12).

4.5.27. Find an infinite linearly independent set in P. For example,
{

1, x, x2 · · ·
}

works!

Section 4.6: The rank of a matrix

Remember that the rank ofA is just dim(Col(A)). It is also equal to dim(Row(A))
and to Rank(AT ) and to the number of pivots of A.

4.6.1, 4.6.5, 4.6.9, 4.6.15. Use the equation dim(Nul(A))+Rank(A) = n. Also,
rank(A) is largest when Nul(A) is smallest.
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4.6.9. By the Rank-Theorem, we have:

dim(Col(A)) = 6− dim(Nul(A)) = 6− 3 = 3

But this does NOT imply that Col(A) = R3, because Col(A) is in R4, so it
CANNOT equal to R3.

4.6.22. This question is just meant to confuse you with words! All that it says is
that if you have an 10 × 12 matrix, could Nul(A) eveyr be 1−dimensional? Use
rank-nullity to argue that it cannot.

4.6.33. I urge you to do 4.6.32 before, it makes this much easier! The point is
that if A has rank 1, then all its columns are multiples of the first column. In

particular, let v be the list of the coefficients. For example, if A =

[
1 −3 4
2 −6 8

]
,

then let v =

 1
−3
4

, because the second column is −3 times the first one and the

third column is 4 times the first one.

If the first column of A is zero, try the second column. If the second column
is zero, try the third column. If neither of those hold, then A is the zero matrix,
which does not have rank 1.

Section 4.7: Change of basis

Remember: To change coordinates
P

C ← B from B to C, just express the vectors
in B in terms of the vectors in C

4.7.3. (ii), because P is just
P

W ← U , so P goes from U to W.

4.7.5. (i), because P is just
P

A ← D, so P goes from D to A.

4.7.9. First, we want to find
P

C ← B. For this, row-reduce:

[
C | B

]
=

[
2 −2 4 8
2 2 4 4

]
−→

[
1 0 2 3
0 1 0 −1

]
Therefore:

P

C ← B=

[
2 3
0 −1

]
And then:

P

B ← C=
(

P

C ← B
)−1

=

[
2 3
0 −1

]−1
= −1

2

[
−1 −3
0 2

]
=

[
1
2

3
2

0 −1

]
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4.7.11.

(a) F
(b) T

4.7.13. Notice that we have [x]C = P [x]B, where P is the matrix you found, and
therefore [x]B = P−1 [x]C .

Section 5.1: Eigenvalues and eigenvectors

Remember: To find the eigenvalues, calculate det(A− λI) and find the zeros of
the resulting polynomial. To find a basis for the eigenspaces, find Nul(A− λI) for
each eigenvalue λ that you found! Also, you should never get Nul(A− λI) = {0}

5.1.1, 5.1.5. Calculate Av, where A is the given matrix and v is the given vector.

5.1.13, 5.1.17. Remember that the determinant of an upper-triangular matrix is
just the product on the entries of the diagonal! (so you can literally ‘read’ off the
eigenvalues)

5.1.21.

(a) F (x has to be nonzero)
(b) T
(c) T
(d) T (depending on what you mean by easy and hard :) )
(e) F

Section 5.2: The characteristic equation

5.2.11. Using Bomberman and expanding along the first row, we get that the
characteristic polynomial of A is:

det(λI −A) =

∣∣∣∣∣∣
λ− 3 0 0
−2 λ− 1 −4
−1 0 λ− 4

∣∣∣∣∣∣
=(λ− 3)

∣∣∣∣ λ− 1 −4
0 λ− 4

∣∣∣∣
=(λ− 3)(λ− 1)(λ− 4)

=(λ− 1)(λ− 3)(λ− 4)

5.2.15. Remember that the determinant of an upper/lower-triangular matrix is
just the product on the entries of the diagonal!

5.2.19. Just plug in λ = 0.
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5.2.21.

(a) F
(b) F
(c) T
(d) F (−5 is an eigenvalue)

Section 5.3: Diagonalization

5.3.1, 5.3.3. If A = PDP−1, then Ak = PDkP−1

5.3.5. The eigenvalues are just the diagonal entries of D, and the eigenvectors are
the corresponding columns of P

5.3.7, 5.3.11, 5.3.17. All you have to do is to find D and P so that A = PDP−1.
To find D, find the eigenvalues. To find P , find the eigenvectors, and put them
together in a matrix.

5.3.21.

(a) FALSE (D has to be diagonal!)

(b) TRUE (Theorem 5; Let D be the matrix of eigenvalues, and P be the
matrix of corresponding eigenvectors)

(c) FALSE (Notice that we didn’t say distinct eigenvalues. It is true that
if A is diagonalizable, then by Theorem 7b, A has n eigenvalues including

multiplicities; but for example the matrix A =

[
1 1
0 1

]
has eigenvalue 1

with multiplicity 2 (so 2 eigenvalues counting multiplicity) but A is not
diagonalizable)

(d) FALSE (Take A to be the O matrix. Then A is not invertible, but A is
diagonalizable because it’s diagonal)

Section 5.4: Eigenvectors and linear transformations

5.4.3. Remember that e1 =

1
0
0

 = (1, 0, 0) etc. To find the matrix in (c), just put

the answers you find in (b) together in a matrix. It’s that easy!

5.4.7. For every polynomial p = 1, t, t2, calculate T (p), and express your answer
in terms of 1, t, t2. The coefficients give you each column of your matrix.

5.4.15. Find the eigenvectors of A (that’s sort of the point of this section)
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Section 5.5: Complex eigenvalues

5.5.1, 5.5.3. Just use the same technique you usually use to find eigenvalues and
eigenvectors!

5.5.7. First, calculate r =
√
det(A) (or take the length of the first row of A). Then

factor out r from A and recognize the resulting matrix as a rotation matrix, i.e.

find φ such that the remaining matrix equals to

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
5.5.13, 5.5.15. First, find the eigenvalues of A, and pick one of them. Then the
first ROW of C consists the real and imaginary parts of the eigenvalue you picked.
Then remember that the diagonal entries of C are the same, and the other entries
are opposites of each other. Finally, to get P , find an eigenvector corresponding to
the eigenvalue you picked, and then the columns of P are the real and imaginary
parts of that eigenvector!

Section 6.1: Inner products, lengths, and orthogonality

6.1.7. Divide the vector by its length!

6.1.19.

(a) T
(b) T
(c) T (see pages 279-280)
(d) F (Vectors in Col(A) are orthogonal to vectors in Nul(AT ), by Theorem

3)
(e) T (this is 1. at the bottom of page 280)

6.1.22. u ·u = u21 +u22 +u23 ≥ 0 (as a sum of squares), and this is = 0 if and only if
all the ui = 0 (and hence u = 0), because a sum of squares is 0 if and only if each
component is 0.

6.1.24.
‖u + v‖2 + ‖u− v‖2

= (u + v) · (u + v) + (u− v) · (u− v)

(by the definition of ‖x‖2 = x · x)

= u · (u + v) + v · (u + v) + u · (u− v) + (−v) · (u− v)

(because x · (y + z) = x · y + x · z for all x,y, z)

= u · u + u · v + v · u + v · v + u · u + u · (−v) + (−v) · u + (−v) · (−v)

(because x · (y + z) = x · y + x · z and y · x = x · y, for all x,y, z)
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= u · u + u · v + v · u + v · v + u · u− u · v − v · u + v · v

(because (cx) · y = x · (cy) = c (x · y) for all x,y)

= u · u + u · v + u · v + v · v + u · u− u · v − u · v + v · v

(because y · x = x · y, for all x,y)

= ‖u‖2 +���2u · v + ‖v‖2 + ‖u‖2 −���2u · v + ‖v‖2

(because x · x = ‖x‖2, and x + x = 2x for all x)

= 2 ‖u‖2 + 2 ‖v‖2

Section 6.2: Orthogonal sets

Remember: A set B is orthogonal if for every pair of distinct vectors u and v,
u · v = 0. It is orthonormal if it is orthogonal and every vector has length 1. An
orthogonal set can be made orthonormal by dividing every vector by its length.

6.2.7.

[x]B =

[ x·u1

u1·u1
x·u2

u2·u2

]

6.2.9.

[x]B =

 x·u1

u1·u1
x·u2

u2·u2
x·u3

u3·u3


6.2.13, 6.2.15. The formula for orthogonal projection of y on the line spanned by
u is:

ŷ =
(y · u

u · u

)
u

Then you can write y = ŷ + (y − ŷ) Notice that ŷ is in the span of u, whereas
(y − ŷ) is orthogonal to u.

The distance between u and L is then ‖y − ŷ‖
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6.2.23.

(a) T (Take


1

0
0

 ,
1

1
0

 ,
1

1
1

 in R3 )

(b) T (You just use the formula in Theorem 5 on page 285; THIS is what makes
orthogonal sets so awesome!)

(c) F (They’re still orthogonal, this is because u
‖u‖ ·

v
‖v‖ = 1

‖u‖‖v‖u · v = 0 if u

and v are orthogonal)
(d) F (in this course, we assume that orthogonal matrices must be square1)
(e) F (it’s ‖y − ŷ‖ which gives that distance)

Section 6.3: Orthogonal projection

Here are all the basic facts that you’ll need:

(1) If W = Span {u1,u2 · · ·uk}, then the orthogonal projection of y onto W
is:

ŷ =

(
y · u1

u1 · u1

)
u1 +

(
y · u2

u2 · u2

)
u2 + · · ·+

(
y · uk

uk · uk

)
uk

(2) Then ŷ is in W , y − ŷ is in W⊥ (that is, orthogonal to W ).
(3) y = (ŷ) + (y − ŷ), which decomposes y as a sum of two vectors, one in W

and the other one orthogonal to W .
(4) ŷ is the closest point to y in W .
(5) ‖y − ŷ‖ is the smallest distance between y and W .

1but not in other courses, beware!



MATH 54 − HINTS − BANK 23

6.3.11.

ŷ =

(
y · v1

v1 · v1

)
v1 +

(
y · v2

v2 · v2

)
v2

=

(
9 + 1− 5 + 1

9 + 1 + 1 + 1

)
3
1
−1
1

+

(
3− 1 + 5− 1

1 + 1 + 1 + 1

)
1
−1
1
−1



=

(
6

12

)
3
1
−1
1

+

(
6

4

)
1
−1
1
−1



=

(
1

2

)
3
1
−1
1

+

(
3

2

)
1
−1
1
−1



=


3
2 + 3

2
1
2 −

3
2

− 1
2 + 3

2
1
2 −

3
2



=


3
−1
1
−1


6.3.21.

(a) T
(b) T
(c) F
(d) T
(e) T

Section 6.4: The Gram-Schmidt process

Use the formula given in Theorem 11. To get an orthonormal basis, just divide
every vector at the end by its length. At every step, it’s helpful to multiply your
vector by a scalar to avoid fractions. This is ok, because you’ll normalize them at
the end anyway!

6.4.9. Just apply Gram-Schmidt to the columns of A.

6.4.17.

(a) F (Although the set would be orthogonal, multiplying by c = 0 wouldn’t
give an orthogonal basis)

(b) T (by (1) in Theorem 11)
(c) T (if A = QR, then QTA = QTQR = R, since Q has orthonormal columns)
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Section 6.5: Least squares problems

Here’s the general procedure to solve least-squares problems: To solve Ax = b in
the least-squares sense, multiply both sides by AT , and solve the (easier) equation
ATAx̂ = ATb. Your solution x̂ is called the least-squares solution. The least
squares error is ‖Ax̂− b‖.

6.5.9. The orthogonal projection of b is given by b̂ = b·a1
a1·a1 a1 + b·a2

a2·a2 a2, where

a1, a2 are the columns of A. Then all you have to do is solve Ax̂ = b̂

6.5.11.

(a) Denote the columns of A by a1,a2,a3

b̂ =

(
b · a1

a1 · a1

)
a1 +

(
b · a2

a2 · a2

)
a2 +

(
b · a3

a3 · a3

)
a3

=
36

54


4
1
6
1

+
0

27


0
−5
1
−1

+
9

27


1
1
0
−5



=
2

3


4
1
6
1

+ 0


0
−5
1
−1

+
1

3


1
1
0
−5



=


3
1
4
−1


(b) Standard-way:

Solve Ax̃ = b̂ by row-reduction::
4 0 1 3
1 −5 1 1
6 1 0 4
1 −1 −5 −1

 −→


1 0 0 2
3

0 1 0 0
0 0 1 1

3
0 0 0 0


Therefore:

x̃ =

 2
3
0
1
3


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OMG-way: Notice that in (a), we obtained:

2

3


4
1
6
1

+ 0


0
−5
1
−1

+
1

3


1
1
0
−5

 =


3
1
4
−1


which tells us directly that:

A

 2
3
0
1
3

 = b̂

therefore the least-squares solution is:

x̃ =

 2
3
0
1
3


6.5.17.

(a) T
(b) T
(c) F
(d) T
(e) T

Section 6.7: Inner product spaces

6.7.1. Here 〈x,y〉 = 4u1v1 + 5u2v2

6.7.5, 6.7.7. Here 〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1). And ‖p‖ =
√
〈p, p〉.

Finally, remember that the formula for orthogonal projection remains the same,
namely:

q̂ =
〈q, p〉
〈p, p〉

p

6.7.11. Here 〈p, q〉 = p(−2)q(−2) + p(−1)q(−1) + p(0)q(0) + p(1)q(1) + p(2)q(2).

If we let p3 = t2, then we have:

p̂3 =
〈p3, p0〉
〈p0, p0〉

p0 +
〈p3, p1〉
〈p1, p1〉

p1 +
〈p3, p2〉
〈p2, p2〉

p2
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6.7.16. This is very cute! Notice that:

‖u− v‖2 = (u− v) · (u− v)

= u · u− u · v − v · u + v · v
= u · u + v · v (since u and v are orthogonal)

= ‖u‖2 + ‖v‖2

= 1 + 1 (by orthonormality)

= 2

Therefore ‖u− v‖2 = 2, and hence ‖u− v‖ =
√

2 (by taking square roots)

Section 7.1: Diagonalization of Symmetric matrices

7.1.9. Remember orthogonal matrices have orthonormal columns!

7.1.17. First diagonalize the matrix as usual, and then apply Gram-Schmidt to
each eigenspace!

7.1.25.

(a) T (by theorem 2; this is the most important fact about symmetric matrices!)
(b) T (by theorem 1)
(c) F (take the identity matrix for example)
(d) F (v has to be a unit vector)

Section 4.2: Homogeneous linear equations: the general solution

4.2.27. Linearly dependent, because sin(2t) = 2 cos(t) sin(t)

4.2.34.

(a) Just evaluate the determinant

(b) (⇒) If there is some point τ where W = 0 at τ , then by Lemma 1, y1 and
y2 are linearly dependent.
(⇐) Suppose that ay1(t) + by2(t) = 0 for all t. Then differentiating this,
we get ay′1(t) + by′2(t) = 0, but then we have:[

y1(t) y2(t)
y′1(t) y′2(t)

] [
a
b

]
=

[
0
0

]
But since W is never 0 on I, the determinant of the first matrix is

nonzero, and hence that matrix is invertible, and hence a = 0 and b = 0,
so y1 and y2 are linearly independent on I.

(c) First assume that y1 = cy2, and calculate W [y1, y2] = W [cy2, y2] and show
it’s equal to 0. Then assume that y2 = cy1 and calculate W [y1, y2] =
W [y1, cy1] and show that you get 0 in both cases.
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Section 4.3: Auxiliary equations with complex roots

The problems should hopefully be pretty straightforward :)

4.3.21. The auxiliary equation is r2 + 2r + 2 = 0, which gives:

r =
−2±

√
4− 8

2
=
−2± 2i

2
= −1± i

Which means that the general solution to the differential equation is:

y(t) = Ae−t cos(t) +Be−t sin(t)

Plugging in t = 0, we get y(0) = A = 2, so A = 2 and hence:

y(t) = 2e−t cos(t) +Be−t sin(t)

Differentiating, we get:

y′(t) =− 2e−t cos(t) + 2e−t(− sin(t))−Be−t sin(t) +Be−t cos(t)

=(B − 2)e−t cos(t) + (−2−B)e−t sin(t)

Plugging in t = 0, we get:

y′(0) = (B − 2) = 1, and so B = 3 .

Therefore our solution is:

y(t) = 2e−t cos(t) + 3e−t sin(t)

4.3.29(b). The following fact might be useful:

Rational roots theorem: If a polynomial p has a zero of the form r = a
b , then

a divides the constant term of p and b divides the leading coefficient of p.

This helps you ‘guess’ a zero of p. Then use long division to factor out p.

Section 4.4: The method of undetermined coefficients

4.4.3. Yes. sin(x)
e4x = e−4x sin(x).

4.4.5. Yes. 4x sin2(x) + 4x cos2(x) = 4x.

4.4.7. No. The method of undetermined coefficients only works for constant-
coefficient linear differential equations, which is not the case because the coeffi-
cient of y′′ is t.

4.4.13. Guess yp(t) = A cos(3t) +B sin(3t)
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4.4.21. Guess yp(t) = (At+B)t2e2t

(Always treat the polynomial term separately! You have to guess t2e2t because
the general solution to the homogeneous equation is already Ae2t +Bte2t)

4.4.27. Guess:

yp(t) = (At3 +Bt2 + Ct+D)t cos(3t) + (Et3 + Ft2 +Gt+H)t sin(3t)

(Always treat the polynomial term separately! You have to guess t cos(3t)
and t sin(3t) because the general solution to the homogeneous equation is already
A cos(3t) +B sin(3t))

4.4.31. Guess:

yp(t) = (At3 +Bt2 + Ct+D)te−t cos(t) + (Et3 + Ft2 +Gt+H)te−t sin(t)

(same remark as 27)

Section 4.5: The superposition principle

4.5.1(b). By linearity, the solution is y(t) = 2y2(t)− 3y1(t)

4.5.3, 4.5.5. Use the fact that y = yp + y0, where y0 is the general solution of the
homogeneous equation.

4.5.9. Yes, because (et + t)
2

= e2t + 2tet + t2

4.5.21. Homogeneous equation:

First of all, the auxiliary equation is r2 + 2r + 2 = 0, which gives:

r =
−2±

√
4− 8

2
=
−2± 2i

2
= −1± i

which tells you the general solution of y′′ + 2y′ + 2 = 0 is:

y0(θ) = Ae−θ cos(θ) +Be−θ sin(θ)

Particular solution:

Notice that e−θ cos(θ) is already a solution of the homogeneous equation, so we’ll
have to guess:

yp(θ) = Aθe−θ cos(θ) +Bθe−θ sin(θ)

This gives us:

y′p(θ) =Ae−θ cos(θ)−Aθe−θ cos(θ)−Aθe−θ sin(θ) +Be−θ sin(θ)−Bθe−θ sin(θ) +Bθe−θ cos(θ)

=(A−Aθ +Bθ)e−θ cos(θ) + (B −Bθ −Aθ)e−θ sin(θ)

And:
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y′′p (θ) =(B −A)e−θ cos(θ)− (A−Aθ +Bθ)e−θ cos(θ)− (A−Aθ +Bθ)e−θ sin(θ)

+(−B −A)e−θ sin(θ)− (B −Bθ −Aθ)e−θ sin(θ) + (B −Bθ −Aθ)e−θ cos(θ)

=(B −A−A+��Aθ −Bθ +B −Bθ −��Aθ)e−θ cos(θ)

+(−A+Aθ −��Bθ −B −A−B +��Bθ +Aθ)e−θ sin(θ)

=(2B − 2A− 2Bθ)e−θ cos(θ) + (−2A− 2B + 2Aθ)e−θ sin(θ)

Plugging those formulas into our equation y′′ + 2y′ + 2y = e−θ cos(θ), we get:

y′′p + 2y′p + 2yp = e−θ cos(θ)[
(2B − 2A− 2Bθ)e−θ cos(θ) + (−2A− 2B + 2Aθ)e−θ sin(θ)

]
+

2
[
(A−Aθ +Bθ)e−θ cos(θ) + (B −Bθ −Aθ)e−θ sin(θ)

]
+2
[
Aθe−θ cos(θ) +Bθe−θ sin(θ)

]
= e−θ cos(θ)

(2B −��2A−���2Bθ +��2A−��2Aθ +���2Bθ +��2Aθ) e−θ cos(θ)

+
(
−2A−��2B +��2Aθ +��2B −���2Bθ −��2Aθ +��2Bt

)
e−θ sin(θ)

= e−θ cos(θ)

2Be−θ cos(θ) + (−2A)e−θ sin(θ) = 1e−θ cos(θ) + 0e−θ sin(θ)

Comparing the left-hand-side and the right-hand-side, we get 2B = 1 and −2A =

0, so A = 0 and B = 1
2 , which tells us that a particular solution is:

yp(θ) = 0θe−θ cos(θ) +
1

2
θe−θ sin(θ) =

1

2
θe−θ sin(θ)

General solution: And therefore the general solution to our differential equation
is:

y(θ) = y0(θ) + yp(θ) = Ae−θ cos(θ) +Be−θ sin(θ) +
1

2
θe−θ sin(θ)

4.5.33. For the cos3(t)-term, use the fact that:

cos3(x) =
1

4
cos(3x) +

3

4
cos(x)

(ridiculous, I know...)

Section 4.6: Variation of parameters

The easiest way to do the problems in this section is to look at my differential
equations handout!

The formula is:
Let y1(t) and y2(t) be the solutions to the homogeneous equation, and suppose

yp(t) = v1(t)y1(t) + v2(t)y2(t). Let:

W̃ (t) =

[
y1(t) y2(t)
y′1(t) y′2(t)

]
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And solve:

W̃ (t)

[
v′1(t)
v′2(t)

]
=

[
0
f(t)

]
where f(t) is the inhomogeneous term.

4.6.20. Don’t freak out! Here we have y1(t) = cos(t) and y2(t) = sin(t). Just use
the variation of parameters formula with f instead of the inhomogeneous term. At
some point, you should get:

v′1(t) = − sin(t)f(t)

and

v′2(t) = cos(t)f(t)

Then, to get v1 and v2, just integrate from 0 to t:

v1(t) =

∫ t

0

− sin(s)f(s)ds

v2(t) =

∫ t

0

cos(s)f(s)ds

Finally, use the fact that yp(t) = v1(t) cos(t) + v2(t) sin(t), and use the formula
sin(t) cos(s)− sin(s) cos(t).

Section 6.1: Basic theory of linear differential equations

6.1.3. First of all, make sure that the coefficient of y′′′ is equal to 1. Then look at
the domain of each term, including the inhomogeneous term (more precisely, the
part of the domain which contains the initial condition 5). Then the answer is just
the intersection of the domains you found!

6.1.7. Use the Wronskian with x = 0

6.1.17. Verify that the three functions solve the differential equations, then show
they’re linearly independent (by using the Wronskian at x = 1)

6.1.19. Use the fact that y = yp+y0, where yp is the given particular solution, and
y0 is the general solution to the homogeneous equation (which is the span of the
fundamental solution set). Then use the initial conditions to solve for the constants.

6.1.23. For example, for (a), we have:

L [2y1 − y2] = 2L [y1]− L [y2] = 2x sin(x)− (x2 + 1) = 2x sin(x)− x2 − 1

So 2y1 − y2 solves the equation for (a)
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6.1.27. Either you can use the Wronskian with x = 0, or use the following reason-
ing: If

a0 + a1x+ a2x
2 · · ·+ anx

n = 0

This means that for EVERY x, x is a zero of a0 + a1x + a2x
2 · · · + anx

n (by
definition of the zero function). However, this polynomial is of degree n, hence
cannot have more than n zeros unless a1 = a2 = · · · = an = 0, which we want!

Section 6.2: Homogeneous linear equations with constant
coefficients

6.2.3, 6.2.7. The following fact might be useful:

Rational roots theorem: If a polynomial p has a zero of the form r = a
b , then

a divides the constant term of p and b divides the leading coefficient of p.

This helps you ‘guess’ a zero of p. Then use long division to factor out p.

6.2.15. The reason this is written out in such a weird way is because the auxiliary
polynomial is easy to figure out! Here, the auxiliary polynomial is

(r − 1)2(r + 3)(r2 + 2r + 5)2.

6.2.20. General solution:

The auxiliary equation is p(r) = r3 + 7r2 + 14r + 8 = 0.

To factor this, we use the rational roots theorem, which says that if r is a root of
the form a

b , then a divides 8 (so a = ±1,±2,±4,±8), and b divides 1 (so b = ±1).
This gives us the guesses r = ±1,±2,±4,±8:

p(1) = 1 + 7 + 14 + 8 = 30 6= 0

p(−1) = −1 + 7− 14 + 8 = 0

BINGO! Therefore r = −1 is a root, and to factor out p, we use long-division:
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X2 + 6X + 8

X + 1
)

X3 + 7X2 + 14X + 8
−X3 −X2

6X2 + 14X
− 6X2 − 6X

8X + 8
− 8X − 8

0

Therefore p(r) = (r+1)(r2+6r+8) = 0, which gives us r = −1, or r2+6r+8 = 0,
that is:

r =
−6±

√
36− 32

2
=
−6± 2

2
= −4,−2

And therefore the roots of p are r = −1,−2,−4 , which tells us that the general

solution to our differential equation is:

y(t) = Ae−t +Be−2t + Ce−4t

Initial conditions:

Plugging in t = 0, we get y(0) = A+B + C = 1

Differentiating, we get:

y′(t) = −Ae−t − 2Be−2t − 4Ce−4t

Plugging in t = 0, we get y′(0) = −A− 2B − 4C = −3

Differentiating again, we get:

y′′(t) = Ae−t + 4Be−2t + 16Ce−4t

Plugging in t = 0, we get y′′(0) = A+ 4B + 16C = 13.

So we are led to solve the system:


A+B + C = 1

−A− 2B − 4C = −3

A+ 4B + 16C = 13

Which we can solve by row-reduction (yay!!!):
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 1 1 1 1
−1 −2 −4 −3
1 4 16 13

 −→
1 0 0 1

0 1 0 −1
0 0 1 1


which gives us A = 1, B = −1, C = 1 , and therefore the solution of our differ-

ential equation is:

y(t) = e−t − e−2t + e−4t

6.2.25. Suppose:

a0e
rx + a1xe

rx + · · ·+ am−1x
m−1erx = 0

Now cancel out the erx, and you get:

a0 + a1x+ · · ·+ am−1x
m−1 = 0

But 1, x, x2 · · · , xm−1 are linearly independent, so a0 = a1 = · · · am−1 = 0,
which is what we wanted!

Section 9.1: Introduction

9.1.7. Let z = y′, then z′ = y′′ = − b
my
′ − k

my = − b
mz −

k
my, then we get:{

y′ = z

z′ = − k
my −

b
mz

9.1.10. Similar to 9.1.7

9.1.13. Let 

x1 = x

x2 = x′ = x′1
x′2 = x′′ = 3x′ − t2y + cos(t)x

x3 = y

x4 = y′ = x′3
x5 = y′′ = x′4
x′5 = y′′′ = −y′′ + tx′ − y′ − etx

Now calculate x′i and put them in a system, using the above relations.
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Section 9.4: Linear systems in normal form

9.4.3. This problem is easier to do than to explain.

For example, for 9.4.1:

A =

[
3 −1
−1 2

]
, f =

[
t2

et

]
Just beware of the following: If for example y′(t) doesn’t contain x(t), then the

corresponding term in the matrix A is 0. Be inspired by this to solve 9.4.3.

9.4.7. The trick is to let x = w′, y = w′′, z = w′′′, then:
w′ = x

x′ = y

y′ = z

z′ = −w + t2

Now rewrite this system in matrix form.

9.4.13, 9.4.16, 9.4.19. Use the Wronskian! The good news is that the wronskian
is very easy to calculate! Just ignore any constants and put all the two or three
vectors in a matrix. For example, for 9.4.17, the (pre)-Wronskian is:

W̃ (t) =

 e2t e2t 0
0 e2t e3t

5e2t −e2t 0


And as usual, pick your favorite point t0, and evaluate det(W̃ (t0)). If this is

nonzero, your functions are linearly independent.

9.4.16. The pre-Wronskian is:

W̃ (t) =

[
sin(t) sin(2t)
cos(t) cos(2t)

]

Evaluating this at t = π
2 (notice that 0 or π don’t work), we get:

W̃
(π

2

)
=

[
1 0
0 −1

]

And therefore the Wronskian at π
2 is:

W
(π

2

)
= det

[
1 0
0 −1

]
= −1

Since the Wronskian is nonzero at some point (here π
2 ), the two vector functions

are linearly independent on R
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9.4.23. Just show that the three vectors are linearly independent. To find A, for
every vector x given, calculate x′(t) for every vector x and just write this in terms
of x(t). This gives the first, second, and third column of A respectively.

9.4.27. Linear operator (in this case) is just another word for linear transformation.
Just show that L[x + y] = L[x] + L[y] and that L[cx] = cL[x]

Section 9.5: Homogeneous linear systems with constant coefficients

If you’re lost about this, check out the handout ‘Systems of differential equa-
tions’ on my website! Essentially all you have to do is to find the eigenvalues and
eigenvectors of A.

Also, to deal with the ‘finding the eigenvalues’ part, remember the following
theorem:

Rational roots theorem: If a polynomial p has a zero of the form r = a
b , then

a divides the constant term of p and b divides the leading coefficient of p.

This helps you ‘guess’ a zero of p. Then use long division to factor out p.

9.5.17. First, draw two lines, one spanned by u1 and the other one spanned by
u2. Then on the first line, draw arrows pointing away from the origin (because of
the e2t-term in the solution, points on that line move away from the origin). On
the second line, draw arrows pointing towards the origin (because of the e−2t-term,
solutions move towards the origin). Finally, for all the other points, all you have to
do is to ‘connect’ the arrows (think of it like drawing a force field or a velocity field).

If you want a picture of how the answer looks like, google ‘saddle phase portrait
differential equations’ and under images, check out the second image you get!

9.5.21. The fundamental solution set is just the matrix whose columns are the
solutions to your differential equation. Basically find the general solution to your
differential equation, ignore the constants, and put everything else in a matrix!

9.5.31. Eigenvalues:

det(λI −A) = (λ− 1)2 − 9 = 0⇒ λ− 1 = ±3⇒ λ = −2, 4

Eigenvectors:

Nul(−2I −A) = Nul

[
−3 −3
−3 −3

]
= Nul

[
1 1
0 0

]
= Span

{[
1
−1

]}

Nul(4I −A) = Nul

[
3 −3
−3 3

]
= Nul

[
1 −1
0 0

]
= Span

{[
1
1

]}
Therefore, the general solution to our differential equation is:
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x(t) = Ae−2t
[

1
−1

]
+Be4t

[
1
1

]
Now plug in t = 0:

x(0) = A

[
1
−1

]
+B

[
1
1

]
=

[
3
1

]
which leads us to solve the system:[

1 1
−1 1

] [
A
B

]
=

[
3
1

]
Row-reducing, we get: [

1 1 3
−1 1 1

]
−→

[
1 0 1
0 1 2

]
which gives us A = 1, B = 2, and therefore our solution is:

x(t) = e−2t
[

1
−1

]
+ 2e4t

[
1
1

]
9.5.35. For (c), you don’t need to derive the relations, just solve the following
equation for u2: Au2 = u1.

Section 9.6: Complex eigenvalues

Again, for all those problems, look at the handout ‘Systems of differential equa-
tions’, where everything is discussed in more detail!

9.6.19. Use use equation (10) on page 541 with m1 = m2 = 1, k1 = k2 = k3 = 2.

Note: The trick where you let y1 = x1, y2 = x′1, y3 = x2, y4 = x′2 is important
to remember! It allows you to convert second-order differential equations into a
system of differential equations!

Section 9.7: Nonhomogeneous linear equations

Again, the handout ‘Systems of differential equations’ goes through this in more
detail!

Note: In what follows, a =

[
a1
a2

]
and b =

[
b1
b2

]
are 2−vectors.

9.7.3. Guess f(t) = eta
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9.7.9. Guess f(t) = e2ta + cos(t)b + sin(t)c + d + et

9.7.13, 9.7.15. The formula is: (
W̃ (t)

)[v′1
v′2

]
= f

where W̃ (t) is the (pre)-Wronskian, or fundamental matrix for your system (es-
sentially the solutions but without the constants).

Section 10.2: Method of separation of variables

10.2.1, 10.2.3, 10.2.5. Just solve your equation the way you would usually do
(for 5, use undetermined coefficients) and plug in the initial conditions. You may
or may not find a contradiction! If you find 0 = 0, that usually means there are
infinitely many solutions, depending on your constant A or B.

10.2.9, 10.2.12. You have to split up your analysis into three cases:

Case 1: λ > 0. Then let λ = ω2, where ω > 0. This helps you get rid of square
roots.

Case 2: λ = 0.

Case 3: λ < 0. Then λ = −ω2, where ω < 0.

In each case, solve the equation and plug in your initial condition. You may or
may not get a contradiction. Also, remember that y has to be nonzero!

10.2.21, 10.2.23. Follow the outline given in the sections ‘Heat equation’ and
‘Wave equation’ in my Partial Differential Equations-Handouts. You don’t need to
worry about Fourier series, as you can just compare the coefficients.

10.2.21.

Step 1: Separation of variables. Suppose:

(1) u(x, t) = X(x)T (t)

Plug (1) into the differential equation we get:

(X(x)T (t))tt =9 (X(x)T (t))xx

X(x)T ′′(t) =9X ′′(x)T (t)

Rearrange and get:
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(2)
X ′′(x)

X(x)
=
T ′′(t)

9T (t)

Now X′′(x)
X(x) only depends on x, but by (2) only depends on t, hence it is constant:

(3)

X ′′(x)

X(x)
=λ

X ′′(x) =λX(x)

Also, we get:

(4)

T ′′(t)

9T (t)
=λ

T ′′(t) =9λT (t)

Step 2: Consider (3):

X ′′(x) = λX(x)

Now use the boundary conditions:

u(0, t) = X(0)T (t) = 0⇒ X(0)T (t) = 0⇒ X(0) = 0

u(π, t) = X(π)T (t) = 0⇒ X(π)T (t) = 0⇒ X(π) = 0

Hence we get:

(5)


X ′′(x) =λX(x)

X(0) =0

X(π) =0

Step 3: Eigenvalues/Eigenfunctions. The auxiliary polynomial of (5) is p(λ) =
r2 − λ

Now we need to consider 3 cases:

Case 1: λ > 0, then λ = ω2, where ω > 0

Then:

r2 − λ = 0⇒ r2 − ω2 = 0⇒ r = ±ω
Therefore:

X(x) = Aeωx +Be−ωx

Now use X(0) = 0 and X(π) = 0:

X(0) = 0⇒ A+B = 0⇒ B = −A⇒ X(x) = Aeωx −Ae−ωx
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X(π) = 0⇒ Aeωπ−Ae−ωπ = 0⇒ Aeωπ = Ae−ωπ ⇒ eωπ = e−ωπ ⇒ ωπ = −ωπ ⇒ ω = 0

But this is a contradiction, as we want ω > 0.

Case 2: λ = 0, then r = 0, and:

X(x) = Ae0x +Bxe0x = A+Bx

And:

X(0) = 0⇒ A = 0⇒ X(x) = Bx

X(π) = 0⇒ B = 0⇒ X(x) = 0

Again, a contradiction (we want X�≡ 0, because otherwise u(x, t) ≡ 0)

Case 3: λ < 0, then λ = −ω2, and:

r2 − λ = 0⇒ r2 + ω2 = 0⇒ r = ±ωi
Which gives:

X(x) = A cos(ωx) +B sin(ωx)

Again, using X(0) = 0, X(π) = 0, we get:

X(0) = 0⇒ A = 0⇒ X(x) = B sin(ωx)

X(π) = 0⇒ B sin(ωπ) = 0⇒ sin(ωπ) = 0⇒ ω = m, (m = 1, 2, · · · )

This tells us that:

(6)
Eigenvalues:λ = −ω2 = −m2 (m = 1, 2, · · · )

Eigenfunctions:X(x) = sin(ωx) = sin(mx)

Step 4: Deal with (4), and remember that λ = −m2:

T ′′(t) = 3λT (t)

Aux: r2 = −9m2 ⇒ r = ±3mi (m = 1, 2, · · · )

T (t) = Am cos(3mt) +Bm sin(3mt)

Step 5: Take linear combinations:

(7) u(x, t) =

∞∑
m=1

T (t)X(x) =

∞∑
m=1

(
Ãm cos(3mt) + B̃m sin(3mt)

)
sin(mx)



40 PEYAM RYAN TABRIZIAN

Step 6: Use the initial condition u(x, 0) = 6 sin(2x) + 2 sin(6x):

Plug in t = 0 in (7), and you get:

(8) u(x, 0) =

∞∑
m=1

Am sin(mx) = 6 sin(2x) + 2 sin(6x) on(0, π)

Equating coefficients, you get:

A2 = 6 (coefficient of sin(2x))

A6 = 2 (coefficient of sin(6x))

Am = 0 (for all other m)

Step 7: Use the initial condition: ∂u
∂t (x, 0) = 11 sin(9x)− 14 sin(15x):

First differentiate (7) with respect to t:

(9)
∂u

∂t
(x, t) =

∞∑
m=1

(−3mAm sin(3mt) + 3mBm cos(3mt)) sin(mx)

Now plug in t = 0 in (9):

(10)
∂u

∂t
(x, 0) =

∞∑
m=1

3mB̃m sin(mx) = 11 sin(9x)− 14 sin(15x)

Equating coefficients, you get:

27B9 = 11 (coefficient of sin(9x))

45B15 = −14 (coefficient of sin(15x))

Bm = 0 (for all other m)

That is:

B9 =
11

27
(coefficient of sin(9x))

B15 = −14

45
(coefficient of sin(15x))

Bm = 0 (for all other m)

Step 8: Conclude using (7) and the coefficients Am and Bm you found:

(11) u(x, t) =

∞∑
m=1

(Am cos(3mt) +Bm sin(3mt)) sin(mx)

where:
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A2 = 6

A6 = 2

Am = 0 (for all other m)

and

B9 =
11

27

B15 = −14

45
Bm = 0 (for all other m)

Note: In this special case, you can write u(x, t) in the following nice form:

(12)

u(x, t) = 6 cos(6t) sin(2x)+2 cos(18t) sin(6x)+
11

27
sin(27t) sin(9x)−14

45
sin(45t) sin(15x)

Section 10.3: Fourier series

10.3.1, 10.3.5. f is even if f(−x) = f(x), f is odd if f(−x) = −f(x).

10.3.7. Just calculate fg(−x) = f(−x)g(−x)

For what follows, use the following formulas:

f(x) ˜
a0
2

+

∞∑
n=1

{
an cos

(nπx
T

)
+ bn sin

(nπx
T

)}

an =
1

T

∫ T

−T
f(x) cos

(nπx
T

)
dx

bn =
1

T

∫ T

−T
f(x) sin

(nπx
T

)
dx

Where T is such that f is defined on (−T, T )
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10.3.11.

A0 =

∫ 2

−2 f(x)1dx∫ 2

−2 12dx

=
1

4

(∫ 0

−2
1dx+

∫ 2

0

xdx

)
=

1

4

(
2 +

[
x2

2

]2
0

)

=
1

4
(2 + 2)

=1

Am =

∫ 2

−2 f(x) cos
(
πmx
2

)
dx∫ 2

−2 cos2
(
πmx
2

)
dx

=
1

2

(∫ 0

−2
cos
(πmx

2

)
dx+

∫ 2

0

x cos
(πmx

2

)
dx

)
=

1

2

([
2

πm
sin
(πmx

2

)]0
−2

+

[
2

πm
x sin

(πmx
2

)]2
0

−
∫ 2

0

2

πm
sin
(πmx

2

)
dx

)

=
1

2

(
0 + 0− 2

πm

[
− 2

πm
cos
(πmx

2

)]2
0

)

=
2

(πm)2
(cos(πm)− cos(0))

=
2

(πm)2
((−1)m − 1)

B0 = 0 by convention.

Bm =

∫ 2

−2 f(x) sin
(
πmx
2

)
dx∫ 2

−2 sin2
(
πmx
2

)
dx

=
1

2

(∫ 0

−2
sin
(πmx

2

)
dx+

∫ 2

0

x sin
(πmx

2

)
dx

)
=

1

2

([
− 2

πm
cos
(πmx

2

)]0
−2

+

[
− 2

πm
x cos

(πmx
2

)]2
0

+

∫ 2

0

2

πm
cos
(πmx

2

)
dx

)

=
1

2

(
− 2

πm
+

2

πm
cos(πm)− 4

πm
cos(πm) + 0 +

[
4

(πm)2
sin
(πmx

2

)]2
0

)

=
1

2

(
− 2

πm
+

2

πm
(−1)m − 4

πm
(−1)m + 0− 0

)
=− 1

πm
− (−1)m

πm

=
1

πm

(
−1 + (−1)m+1

)
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It follows that:

f(x)“ = ”1+

∞∑
m=1

(
2

(πm)2
((−1)m − 1) cos

(πmx
2

)
+

1

πm

(
−1 + (−1)m+1

)
sin
(πmx

2

))

10.3.17, 10.3.19. The Fourier series converges to f(x) if f is continuous at x,

and converges to f(x+)+f(x−)
2 if f is discontinuous at x. As for the endpoints T

and −T , the fourier series converges to the average of f at those endpoints.

10.3.26. Just show:∫ 1

−1
cos

(
(2m− 1)π

2
x

)
sin

(
(2n− 1)π

2
x

)
dx = 0∫ 1

−1
cos

(
(2m− 1)π

2
x

)
cos

(
(2n− 1)π

2
x

)
dx = 0∫ 1

−1
sin

(
(2m− 1)π

2
x

)
sin

(
(2n− 1)π

2
x

)
dx = 0

for all m and n.

Use the following formulas:

2 cos(A) cos(B) = cos(A+B)+cos(A−B), 2 sin(A) sin(B) = cos(A−B)−cos(A+B)

as well as the fact that odd-ness (for the first one).

10.3.27. Just calculate: ∫ 1

−1 f(x)g(x)dx∫ 1

−1 g(x)2dx

for every function g(x) in 10.3.27 (this follows from formula (20) on page 588).

Section 10.4: Fourier cosine and sine series

IMPORTANT NOTE: The book uses the following trick A LOT:

Namely, suppose that when you calculate your coefficients Am or Bm, you get

something like: Am = (−1)m+1+1
πm .

Then notice the following: If m is even, then (−1)m+1 + 1 = 0, so Am = 0, and
if m is odd, (−1)m+1 + 1 = −2, and Am = −2

πm .

So at some point, you would like to say:
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f(x)“ = ”

∞∑
m=1,modd

Am cos(mx)

The way you do this is as follows: Since m is odd m = 2k− 1, for k = 1, 2, 3 · · · ,
and so the sum becomes:

f(x)“ = ”

∞∑
k=1

−2

π(2k − 1)
cos((2k − 1)x)

10.4.1, 10.4.3. π-periodic extension just means ‘repeat the graph of f ’.

The even-2π periodic extension is just the function:

fe(x) =

{
f(−x) if− π < x < 0

f(x) if0 < x < π

The odd-2π periodic extension is just the function:

fo(x) =


−f(−x) if− π < x < 0

0 ifx = 0

f(x) if0 < x < π

And repeat all those graphs!

10.4.5, 10.4.7, 10.4.9. Use the formulas:

f(x)“ = ”

∞∑
m=0

Am cos
(πmx

T

)
where:

A0 =
1

T

∫ T

0

f(x)dx

Am =
2

T

∫ T

0

f(x) cos
(πmx

T

)
dx

10.4.11, 10.4.13. Use the formulas:

f(x)“ = ”

∞∑
m=0

Bm sin
(πmx

T

)
where:

B0 = 0

Bm =
2

T

∫ T

0

f(x) sin
(πmx

T

)
dx
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10.4.17, 10.4.19. See next section!

Section 10.5: The heat equation

The best advice I can give you is: Read the PDE handout, specifically the sec-
tion about the heat equation! It outlines all the important steps you’ll need!

Also read the important note I wrote in the previous section!

10.5.7. Imitate Example 2! Your solution is

u(x, t) = v(x) + w(x, t)

where v(x) = 5 + 5x
π and w(x, t) solves the corresponding homogeneous equation

with w(0, t) = 0, w(π, t) = 0 but with w(x, 0) = sin(3x)− sin(5x)− v(x).

10.5.9. Don’t worry about this for the exam, but basically because we’re dealing
with an inhomogeneous solution, the general solution u(x, t) is of the following form:

u(x, t) = v(x) + w(x, t)

where v(x) is a particular solution to the differential equation, and w(x, t) is
the general solution to the homogeneous equation (36), (37), (38) on page 671
(careful about the initial term, it’s w(x, 0) = f(x)− v(x), not w(x, 0) = f(x))

To find v use formula (35) on page 671, and to find w, solve equations (36), (37), (38).

10.5.15, 10.5.17. Note: This is just an outline. On your homework, please fill in
all the details.

This time assume u(x, y, t) = X(x)Y (y)T (t). Plugging u into the PDE we get:

X(x)Y (y)T ′(t) = X ′′(x)Y (y)T (t) +XY ′′(y)T (t)

And dividing by X(x)Y (t)T (t), we get:

T ′(t)

T (t)
=
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)

Now the right-hand-side depends only on x, and y, but also only on t (by the
left-hand-side), hence it is constant, which gives us:

T ′(t)

T (t)
= λ =

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)

So in particular T ′(t) = λT (t), and also:

X ′′(x)

X(x)
= λ− Y ′′(y)

Y (y)
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But now notice that the left-hand-side depends only on x, and only on y (by the
right-hand-side), hence it is also constant, and we get:

X ′′(x)

X(x)
= µ = λ− Y ′′(y)

Y (y)

So in particular X ′′(x) = µX(x). Now use the boundary condition X ′(0) =
X ′(π) = 0 and cases to argue that µ = m2 for m = 0, 1, · · · , and Xm = Am cos(mx)
which gives:

Y ′′(y)

Y (y)
= λ− µ = λ−m2

But now use the boundary condition Y (0) = Y (π) = 0 and cases to argue that
λ−m2 = n2 for n = 1, 2, 3, · · · , (and so λ = m2 + n2), and Yn = Bn sin(ny).

Finally, using T ′(t) = λT = (m2+n2)T , we get: T (t) = e(m
2+n2)t, and we finally

obtain:

umn(x, y, t) = X(x)Y (y)T (t) = AmBn cos(mx) sin(ny)e(m
2+n2)t

And finally the general solution is:

u(x, y, t) =

∞∑
m=0

∞∑
n=1

Cmn cos(mx) sin(ny)e(m
2+n2)t

Finally, all you have to do is to plug in t = 0 to get:

u(x, y, 0) =

∞∑
m=0

∞∑
n=1

Cmn cos(mn) sin(ny)

For 10.5.15, you just have to compare terms and get C6,4 = 1 and C1,11 = −3
and everything else = 0, which tells you:

u(x, y, t) = cos(6x) sin(4y)e52t − 3 cos(x) sin(11y)e122t

And for 10.5.17, you use ‘hugging’ (or orthogonality) to get:

C0n =

∫ π
0

∫ π
0
y(1) sin(ny)dxdy∫ π

0

∫ π
0

12 sin2(ny)dxdy
=
π
∫ π
0
y sin(ny)dy

π
2

= 2
(−1)n+1

n

If m ≥ 1

Cmn =

∫ π
0

∫ π
0
y cos(mx) sin(ny)dxdy∫ π

0

∫ π
0

cos2(mx) sin2(ny)dxdy
=

(∫ π
0

cos(mx)dx
) (∫ π

0
y sin(ny)dy

)
1
4

= 0

Which ultimately gives us:

u(x, y, t) =

∞∑
n=1

2
(−1)n+1

n
e−n

2t sin(ny)
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Section 10.6: The wave equation

Read the PDE handout, specifically the section about the wave equation! It
outlines all the important steps you’ll need!

Section 10.7: Laplace’s equation

Read the PDE handout, specifically the section about Laplace’s equation! It
outlines all the important steps you’ll need!

The most important thing to remember is that when you solve for Y (y), your
solution might involve exponentials, i.e.

Y (y) = Aewy +Be−wy

for some constants A,B,w (which might depend on w). Do NOT use this form!
Instead, use the fact that:

ew + e−w

2
= cosh(w)

ew − e−w

2
= sinh(w)

and write:

Y (y) = A cosh(wy) +B sinh(wy)

where A and B might be constants different from above (but still call them A
and B).

This will simplify your algebra by a LOT, trust me!


