Math 54 - Practice Final Exam Solutions
GSI: Santiago Canez

Disclaimer: These solutions should be correct, but I may have made some typos. If
unsure about a solution, ask ;)

1. (a) Find the inverse of the following matrix.

1 -2 4
1 0 -2
-3 12 =32

(b) Solve the following system using the inverse found above.

1 -2 4 71 2
1 0 —2|z]|=114
-3 12 -32/ \a3 —2

Solution. (a) We use Gaussian elimination as follows:

1 -2 4 | 100 1 -2 4 | 1 0 0
1 0 -2 ] 010]=>]0o 2 -6 ] -1 1 0
3 12 -32 | 0 0 1 0 0 -2 1] 6 -31
10 0 | -6 4 -1
—~lo2 o | -19 10 -3
00 -21] 6 -3 1

Dividing the second row through by 2 and the third by —2, we conclude that the inverse
of the given matrix is

-6 4 -1
-19/2 5 —3/2
-3 3/2 —1/2

(b) Since the coefficient matrix is invertible, the solution is

-1

1 1 -2 4 2 -6 4 -1 2 6
wm|=11 0 =2 4 l=1-19/2 5 =3/2||4]|=|4
3 -3 12 —32 -2 -3 3/2 -1/2) \-2 1

2. Let W be the set of all invertible n x n matrices. Is W a subspace of M,,,,?

Solution. No, W is not a subspace of M,,. The simplest reason why is because the zero
matrix is not invertible and so is not in W. But also, W is not closed under addition
— for example, the identity matrix I is in W, as is its negative —I, but their sum
I+ (—I)=0isnotin W. O

3. Determine if the polynomials = + 1, 222 + 3, and 3z — 5 are linearly independent. Do
they span P»?



Solution. We can use the coordinate vectors of these polynomials as the columns of a
matrix

1 3 -5
10 3
02 0

Now, these polynomials are linearly indepedent if and only if the columns of this matrix
are linearly indepdent, which in turn is true if and only if the echelon form of the matrix
has a pivot in each column. We have

1 3 -5 1 3 -5
10 3|]—-1]10 -3 8
02 0 0 0 16

so we conclude that the columns, and thus the polynomials are linearly independent.
Since we have 3 linearly independent vectors and P is 3-dimensional, they must
span P, (which we can also see from the echelon form above). O

4. Find bases for the null space, row space, and column space of the following matrix.

1 1 -3 3 5
4 4 =14 12 22
-3 -3 5 -6 -5
1 1 3 6 5

Solution. The echelon form of this matrix is

1 1 -3 3 5 11 -3 3 5
4 4 14 12 22 00 -2 0 2
-3 -3 5 -6 =5 00 0 3 6
1 1 3 6 5 00 0 0O

From this we know that basis for the row space is
(11 -335),00 -20 2,000 3 6)

i.e. the nonzero rows of the echelon form. Also, a basis for the column space is

1 -3 3
4 —14 12
=3l 5 " -6
1 3 6

i.e. the columns of the matrix which correspond to pivot columns of the echelon form.
Finally, an arbitrary vector in the null space has the form

T —s+ 4t -1 4
T9 S 1 0
z3 | = t =s| 0 [|+t] 1
X4 —2t 0 —2
T5 t 0 1



Hence a basis for the null space is

O]

5. (a) Let X = (§ 2 ). Let T : Moy — Ma; be the function defined by T(A) =
AX — X A. Prove that T is a linear transformation.

(b) Find a basis for the null space of T'. (The null space of T" is defined as the set of
all matrices A such that T'(A) = 0)

Solution. (a) Let A, B € May. Then
T(A+B)=(A+B)X -X(A+B)
=AX+BX-XA-XB
=(AX - XA)+ (BX — XB)
=T(A)+T(B).
Also, if r is a scalar, then

T(rA) = (rA)X — X(rA)

=rAX —rXA
=r(AX — XA)
=rT(A)

so T satisfies the two required properties of being a linear transformation.

(b) Let A be a 2 x 2 matrix such that T'(A) = 0. We first determine what A looks
like. Suppose that A = (‘; Z). Since T(A) = AX — XA =0, we must have AX = XA.
Computing both sides we have

AX =XA
a b 1 2\ (1 2 a b
¢c dJ\0 =1/ \0o —1/)\¢c d
a 2a—-b\ (a+2c b+2d
c 2c—d) —c —d |-

Now, comparing corresponding entries, we see that ¢ must be 0 and 2a — b = b+ 2d, so
a = b+ d. Thus the matrix A has the form

(5 8)=2o o) e (o 1)

Hence a basis for the null space of T' is

(b0)( 1)



6. Let V' be an inner product space. Using the Cauchy-Schwartz inequality, prove that
for any vectors u,v e V, [[lu+v|| < [[u] + ||v]|

Solution. By the Cauchy-Schartz inequality, we know that u-v < |jul|||v||. Thus

lutv]? = (u+v)- (u+v)
=u-ut+2u-v+v-v
<u-u+2fullfjv]f+v-v
= [[ull* + 2[ullv + |Iv]?

2

= ([[all +{IvI})*.
Taking the square root of both sides we get the desired inequality. O
7. Let vi,..., v, be an orthonormal basis for an inner product space V. Prove that the

coordinate vector relative to this basis of a vector x € V' is

Solution. Suppose that x = ¢;vy + ...+ ¢, vy, Then, taking the inner product of both
sides with v; we have

x-v; = (1vi+ ...+ cpvn) - V;

=C1vVy1 V;+...+¢CVvi - Vi+ ...+ cpvy - V.

Since vy, ..., v, are orthonormal, each inner product on the right side is 0 except for
v; - v;, which is 1. Thus the only nonzero term on the right side is ¢;v; - v; = ¢; and so
we conclude that

C; =X Vj;.

Hence the coordinate vector of x is as claimed. O
8. (a) Find the determinant of the following matrix.

-2 3 2

-1 3 0

4 -3 1
(b) Is the above matrix invertible?

Solution. (a) Using a cofactor expansion along the second row, we have

-2 3 2
-1 3 0 :‘_33 f‘+3“f ﬂ=9+3(—10):—21.
4 =3 1
(b) Since the determinant is not 0, this matrix is invertible. O



9. Find bases for the eigenspaces of the following matrix.

2
1
1

N W N
N = =

Solution. The characteristic polynomial of this matrix is (using a cofactor expansion
along the first column)

A—2 -2 1
det(\[—A)=| -1 A—3 -1
1 -2 A-2

A=3 1] =2 1] -2 -1

_(A_Q)‘ 2 )\—2‘+‘—2 )\—2'_‘)\—3 —1‘

A=2)(A2 =5X+4) — (=22 +2) — (A — 1)
=A=2)A-49HA-1)-20-1)-(A-1)
=A-DA=2)A-4)-2-1]
=A=1(A\=6)A+5)

= (A =1\ -5).

Thus the eigenvalues are 5 and 1. Computing a basis for NS(A — A) for each eigenvalue
A, we find that a bases for W5 and Wj respectively are

1 -1 -2
1] and 01,11
1 1 0

10. Determine if the following matrices are diagonalizable. If so, diagonalize them.
4 0 -2 4 0 0
()2 5 4 b1 4 0
0 0 5 0 05

Solution. (a) The eigenvalues of this matrix are 5 and 4, and bases for W5 and Wy
respectively are

-2 0 —1
0 ],{1] and 2
1 0 0

Since we have three linearly indepedent eigenvectors, this matrix is diagonalizable, and
we can diagonalize it as

-1

4 0 -2 -2 0 -1 5 0 0 -2 0 -1
25 4)=10 1 2 0 50 0 1 2
0 0 5 1 0 O 0 0 4 1 0 0



(b) The eigenvalues of this matrix are 4 and 5, and bases for Wy and Wj respectively
are

0 0
1] and | O
0 1

Since there are only two linearly independent eigenvectors, this matrix is not diagonal-
izable. O

11. (a) Prove that if £e™ is a solution of a system of differential equations x’ = Ax,
then 7 is an eigenvalue of A and £ is an associated eigenvector.
(b) Solve the following system and draw its phase portrait.

, (42
X—13X

Solution. (a) For x = £e" to be a solution of x’ = Ax, we must have

(ge") = A(ge™)
Tgert — €TtA§
ré = A€.

Hence r must be an eigenvalue of A and & must be an associated eigenvector.
(b) The eigenvalues of A are 5 and 2, and eigenvectors corresponding to each of

these respectively are
2 -1
<1> and < 1 >

Hence the general solution of the system is

X =cC (?) e’ + ¢y (_11> e

The phase portrait is



12. Consider the following system of linear differential equations.

x'—65x
- \2 -3

(a) Find the special fundamental matrix ®(¢) which satisfies ®(0) = I.
(b) Solve the following initial value problem using the fundamental matrix found in

(s 2 o)

(c¢) Draw the phase portrait of the given system.

Solution. (a) The eigenvalues of A are 7 and —4, and eigenvectors corresponding to

these respectively are
5 -1
(1) and < ; ) |

Hence two linearly independent solutions of the system are

5\ 7t -1\ _u
(1>6 and<2>e .

From this we can form a fundamental matrix

567t _e—4t
‘I'(t) = <e7t 2€4t> .



Thus the special fundamental matrix ®(¢) satisfying ®(0) = I is
O(t) = () (0)~
_(Be™ —emH\ (5 -1 -
S\e™ 27 )1 2
1 (Be™ —eT\ (2 1
T \e™ 2% ) -1 5
1 10e™ 4+ =4 5Tt — 5e= 4
T 11 \2e =271 €T 4 10e7 )

(b) The solution to the initial value problem is

_ 1 [10e™ e pe™ —5em N (1
11 \2eT =274 T 10e7 ) \ -2
11l ®

T 11\ —22e7% )

(c) The phase portrait is

Cll edlt
13. (a) Prove that if A = ( ) is diagonal, then et = )
dn, ednt

(b) Prove that if A can be diagonalized as A = SAS™!, then et = SeMS—1,
(c) Compute e using (b) where A is the matrix in problem 11b.



Solution. (a) We use the definition of et given by

oo
Amgm
oy A

m!

m=1

Since A is diagonal, A™ is diagonal with diagonal entries d",...,d]". Plugging this in

for A™ above and rewriting the sum, we have
dmtm

00 m! 0
At I
e
— d?’ntnl
"N 0 Tl
oo dPt™
= 0
oo  dpt™
0 e D

Finally, we can combine this matrix with the identity, so we get a matrix with diagonal
entries as series, which we recognize from calculus as the Taylor series for e??, ... ednt

as required.
(b) First, if A= SAS™!, then A¥ = SA*S~!. Thus

At o (At)k
e =1 k!
k=1
. SAkG—1k
=1+ kz TR
=1

_ S(At)kS—1
_ 1 § :
=1

as required.
(c) Using the eigenvectors found in 11b, we can diagonalize A as

(£9-6 696D
60626 D)

Thus by (b) and (a),

-1 0 1 1

1 0 et ) \-1 2
265t 4 th 265t _ 2€2t
( 5t g2t G5t +262t)



14. (a) Prove that if u + iv is a complex solution of the system x’ = Ax, then both u
and v are real solutions.
(b) Solve the following system.

o (5 10)_
“ -2 -3

Solution. (a) For u+iv to be a solution of x' = Ax, we must have
(u+iv) = A(u+iv)
u +iv = Au+iAv.

Comparing the real and imaginary parts on both sides, we must have u’ = Au and
v/ = Av, showing that u and v themselves are solutions of x’ = Ax.
(b) The eigenvalues of A are 1 4 2i, and an eigenvector corresponding to 1 + 2i is

10
—442i)°

This gives us a complex solution, which we rewrite as

10 (142i)t _ 10 " o
<—4+2i>6 =449 e'(cos 2t 4 isin 2t)
. 10 cos 2t + 710 sin 2¢ ot
~ \—4cos2t — 2sin 2t + 2i cos 2t — 4isin 2t

_ 10 cos 2t toy 10sin 2¢ ‘
T \—dcos2t —2sin2t) ¢ T —4sin 2t + 2 cos 2t €

Hence, using the real and imaginary parts, we find that the general solution of the
system is

X —c 10 cos 2t et 10sin 2¢ o
~ 1\ —4cos2t — 2sin 2t 2\ —4sin2t +2cos2t) *

O

15. (a) Prove that if x = £te™ + ne™ is a solution of the system x’ = Ax, then r is an
eigenvalue of A, £ is an associated eigenvector, and 7 satisfies (A — rI)n =¢&.
(b) Solve the following system.

x' = -3 _2x
2 -7

Solution. (a) For te™ + ne™ to be a solution of x' = Ax, we must have

(gtert _|_nert)l _ A(gtert +77€rt)
réte™ + e 4 rne’™ = A(Ete™) + A(ne™)
réte™ (€4 rn)e™ = te™ A + e An.

10



Hence comparing the te” and e terms on both sides, we have A¢ = r¢ and An = rn+-€.
The first equation says that r is an eigenvalue of A and £ is an associated eigenvector,
and the second equation can be rewritten as (A — rI)n = £ as required.

(b) The only eigenvalue of A is —5, and a corresponding eigenvector is

(1)

Thus one solution of the system is
Now, solving
for n, we find one possibility is

- ()

Hence the general solution of the system is
_ (1Y -5t L\ s, (3/2\ -5t
X=a <1>e +02<<1>te + 1 e .

16. Find the eigenvalues and eigenfunctions of the following boundary value problem.

O

y'+xy=0, y(L)=0, y'(0)=0

Solution. For we consider the case where A = ;2 > 0. The general solution to 3"+ uy =
0 is then
Y = €1 COS T + c2 Sin ux.

Now, the first boundary condition y(L) = 0 implies that
ci1cos L+ cosin uL = 0.
We cannot conclude anything about ¢; and ¢y yet so we use the second condition. Since
y = —cipusin px + capu cos p,
the condition y/(0) = 0 implies that
—cypsin0 + capcos0 =0
so co = 0. Thus, going back to the first condition, we must have

cicospul = 0.

11



Since we are looking for nontrivial solutions, we must have cos uL = 0. For this to be
true, uL must be one of 7,37 5T — i.e. we must have

57 77 7’ DRI
2n —1
ul = (712)77 forn =1,2,3,dotsc.
Hence p = (2”221)7r so the positive eigenvalues are
m—1 2.2
Ap = (n4L2)7r for n =1, 2, dotsc
and eigenfunction for these are
2n —1
Yn = COS (n2L)7r$ for n = 1,2, dotsc.

Second we consider the case where A\ = 0. Then the general solution to 3" = 0 is
y = c1x + ¢o. The first condition y(L) = 0 implies that ¢;L + ¢o = 0 and since ' = ¢q,
the second condition y'(0) = 0 implies that ¢; = 0. Hence ca = 0 from the first condition
so there are no nontrivial solutions in this case — i.e. 0 is not an eigenvalue.
Finally we consider the case where A = —u? < 0. The general solution to 3’ —p?y = 0
is then
y = c¢1 cosh px + co sinh pa.

Since
y' = cipusinh px + cop cosh px,

the boundary condition y’(0) = 0 implies that
c1psinh 0 4 coppcosh0 =0
so we must have ca = 0. Then, the condition y(L) = 0 implies that
cicoshul =0

and since cosh x is never 0, it follows that ¢; = 0. Thus there are no nontrivial solutions
in this case either so the equation has no negative eigenvalues. O

17. (a) Derive the formulas for the Fourier coefficients of a function with period 2L.
(b) Find the Fourier series of the following function and draw the graph of the
function to which the Fourier series converges for three periods.

f(z) 0, —2<z<0
xTr) =
11—z, 0<z<?2

Solution. (a) Let f be a function of period 2L. Throughout, suppose that

_ap > mmx . mmx
f(z) = 5 +;(amcos 7 —i—bmsm—L > (1)

12



is the Fourier series of f. Also, let (,) be the inner product

L
- / f(@)g(x) de
~L

and recall the orthogonality relations

ifm=#n
<cosmzm, ifm=n=#0
ifm=n=0
<COS m;r ,S = 0 for any m and n
< mnrx n7ra: ifm#mn
sin ——, sin —— )
L ifm=n

First, we derive the formula for ag. Take the inner product of both sides of (1) with
cos0 = 1 and distribute to get

(f(x),cos0) <a0 + Z (amcos +b sin mzx) ,cos0>

ag > X . mmx
=5 (cos0,cos0) + mzz:l ( <COS , COS O> + by <sm T’COS 0>) .

By the orthogonality relations, the only inner product on the right side which is nonzero
is (cos0,cos0). Hence the only nonzero term on the right side is % (cos 0, cos0) so

(f(z),cos0) = % (cos 0, cos0)

and thus
5 (f(x),cos0)

0= (cos0,cos0)

Using the orthogonality relations and the definition of the inner product, this becomes

_i/LLf(x)d:c

Second, we derive the formula for a,,n # 0. Take the inner product of both sides
of (1) with cos "7* and distribute to get

nrx\ [ ag mrx nwx
<f(x),cos L> < —|—Z<amcos +b sin —— 7 ),COS—L >

o
a nme T nmT . omnx nwx
= 20 <cosO cos—>+ E (am <cos COST>+bm <smT,cos T>> .

m=1

13



By the orthogonality relations, the only inner product on the right side which is nonzero

is <cos “TE cos M > so the only nonzero term on the right side is a, <cos “EE cos MTE >
50 nmw nmx nmx

<f(:£), coS T> =an <cos —»¢os T>
and thus

<f( ), cos n

<cos “TE, cos MTE >

Ay —

Using the orthogonality relations and the definition of the inner product, this becomes

1 (L
:L/Lf(x)cosde.

Finally, we derive the formula for b,. Take the inner product of both sides of (1)
%7 and distribute to get

oo
<f(x),sinnLﬂ>: <C;J+ (amcosmﬂx

m=1

with sin

. m7r:n> . nmx
m, SIN 17 ,sin i

o0
= % <c080,sin ?> + Z (am <cos ?,sin nLﬂ> + b, <sin ?,sin ﬂLx» .

By the orthogonality relations, the only inner product on the right side which is nonzero

is <s1n “TE sin "zx> so the only nonzero term on the right side is b, <sm “TE sin "zx> SO

f(x),si nre = b, (sin —, sin ——
() i 2

and thus
< f(x),sin n

f NTX nwx
<sm L sm .

by =

Using the orthogonality relations and the definition of the inner product, this becomes

/ f(z sinwdx

Note: This all may seem like a lot of work and difficult to remember, but it is
(relatively) simple if you notice the similarity between this and problem 7 — the point
is that the functions cos ™ for m = 0,1,2,... and sin “7* for n = 1,2,3,... are
orthogonal under this inner product, so the formulas for the Fourier coefficients give
us the coordinates of a function relative to this basis — when we are finding a Fourier
series, we are expressing a function as a linear combination of the orthogonal vectors
cos "= for m = 0,1,2,... and sin *7* forn = 1,2,3, ...

14



(b) We compute the Fourier coefficients as follows:

2
ap = E f(z)dx

1 /2
= —(1 —z)sin m / sin 20 g
mm 0 mm Jo
2 mmz |?
=— cos
(mm)? 2
2
= ()2 (1 — cosmm)
1 [? T
bmzz/(l—x)sin dx
0
1 1 2
= ——(1 —x)cos ALLEY / cos T2 gy
mi 2 |, mmJ)y
1 maz |?
= — 1 — 1
mw(cosmﬂ—i— ) ()2 sin — )

1
= —(cosmm + 1).
mm

Thus the Fourier series of f is

> 2 mmwx 1 . mmnx
Z ——5 (1 — cosm) cos + —(cosmm + 1) sin
A=\ (mm) 2 mm 2

and the graph of the function it converges to is

15



18. Let f(z) =14z for0 <z < 1.
(a) Find the Fourier sine series of the given function.
(b) Find the Fourier cosine series of the given function.

Solution. (a) We are using the odd extension of f, so we only need to compute the by,
coefficients. We have

2 (F . mmx
bm:L/O (1—1—33)81an:£

1
= 2/ (1+ x)sinmrx dr
0

1 1
2
+ — cosmmx dx
0 mT 0

= ——(1+x)cosmmz
mm

2
= — (1 —2cosmm).
mm

Hence the Fourier sine series of f is
oo
2 .
g —(1 — 2cosmm) sinmmz.

mT
m=1

(b) We are using the even extension of f, so we only need to compute ay and the

16



a,, coefficients. We have

L
/1+x
0
1
2/ 1—i—a:
0
+m
T+
2

L
(1 + ) cos

h\w

Il
DO

ww e

o\..

xdw

1
—2/ (14 z) cosmmz dx
0

2 Yoot
= —(1 + z)sinmrx| — — [ sinmmrrdx
mm o mm Jo
9 1
= 5 COSMTT
(m) 0
2
= W(COS mm — 1)

: Z . ( 1)
+ cosmm COSMTT.
2

19. Solve the following heat equation (from scratch).
Qg =u, O0< <2

with boundary conditions
u(0,t) =0 =u(2,t)

and initial condition u(z,0) = 2sin 7z — 5sin4mz.
Solution. First we suppose that our function u can be written as
u(x,t) = X(x)T(t)
for some functions X and T. Plugging this into the heat equation gives
4X"T = XT'.
Now, we separate variables to get

X"(z) T'(t)

X(x) 4T(t)

17



Holding ¢ fixed on the right side, we see that the left side then has to be a constant for
all x and thus the right side is the same constant for all ¢. Call this constant —A, so
Xl/ T/

YZ—AandE:—)\

Rewriting these equations we get the ordinary differential equations
X"+ XX =0and T' +4\T = 0.
Now, the boundary conditions «(0,¢) = 0 and u(2,t) = 0 give
X(0)T'(t) =0and X(2)T(t) =0

respectively. We assume that 7T is not 0 since we are looking for nontrivial solutions, so
we conclude that X (0) = 0 and X (2) = 0. Thus we have the following boundary value
problem for X:
X"+ AX =0, X(0)=0, X(2)=0.
Going through the process of finding the eigenvalues and eigenfunctions, we find that
the only eigenvalues are \,, = % forn =1,2,... and corresponding eigenfunctions are
X, = sin #5%. For each of these eigenvalues, we have the following first order differential
equation for T
T + 4\, T =0

which has the nontrivial solution

T — 674)\nt _ eanTer
n = = .

Thus, for each n = 1,2,..., we have the following nontrivial solution of the heat
equation:
up(x,t) = Xp ()T, (t) = e "™t gin ?

The general solution is then an arbitrary linear combination of these:

oo o0
u(x,t) = Z bptun(z,t) = Z bpe "™t sin ?
n=1 n=1

Finally, the initial condition
u(z,0) = 2sinmx — Ssindnw

implies that
o
. . _ 2.2, . NTXT
2sinx — bsindnx = E be ™ ™ tsin 5

n=1

Thus the b, must be the Fourier sine coefficients of f(x) = 2sin7x — 5sin4rz. We can
compute these using the integral formulas as usual, but since f(x) is already in the form

18



of a Fourier sine series, there is an easier way to compute these coeflicients. First we
rewrite f(x) so that each sin term has L = 2 in the denominator:

2
f(z) = 2sin%m —5sin87r7x.

From this we can see that by = 2, bg = —5, and every other b, is 0. Plugging these into
the formula for u(z,t), we see that the solution to our heat equation is

2 8
u(z,t) = 24" gin % — 5e 04t gin %

20. Solve the following partial differential equation.
tuze =ug, O0<az<m

with boundary conditions
u(0,t) =0 = u(m,t)

and initial condition u(z,0) = =.

Solution. As in problem 19, we assume that u(z,t) = X (x)T(t). Plugging this into the
given partial differential equation gives

tX"T = XT'
and separating variables we have
X// T/
X T

As in problem 19, we can then conclude that both sides must be constanst, say —A.
Setting both sides equal to this constant and rewriting the equations we get the ordinary
differential equations

X"+ XX =0and T + MT = 0.

From the boundary conditions u(0,t) = 0 = u(m,t) we get the following boundary
value problem for X:

X"+ AX =0, X(0) =0, X(m) =0.

The only eigenvalues of this are A, = n? for n =1,2,... and eigenfunctions for each of
these are X,, = sinnx. Now, for each of these eigenvalues, we have the following first
order differential equation for 7"

T + MtT = 0.

We can solve this using separation of variables from Math 1B, and one nontrivial solution

is then
Ant? _ n242

Tn:€ 2 = e 2

19



Thus for each n = 1,2, ..., we have the following solution to the given partial differential

equation:
2,2

_n7t7
up(z,t) = X, T, =€~ 2 sinnzx.

The general solution is then an arbitrary linear combination of these:
o 0242
u(zx,t) = Z bpe "2 sinnz.
n=1

The initial condition u(x,0) = x implies

[e.e]
_n22
l':g bpe” 2 sinnx
n=1

so the b, are the Fourier sine coefficients of f(x) = x. We compute these as follows
(here L = m):

2 vy
b, = / rsinnx dx
0

T
2 4 4
= ——zxcosnx| + — cosnx dx
nmw o nm o
2 2 . T
= ——mcosnm + —5— SInn
nmw nm 0
= —— COSnT.
n

Thus the solution to the given partial differential equation with given boundary condi-
tions and initial condition is

oo
2cosnm _n2t2 |
u(w,t):E ————e 2 sinnz.
n
n=1

20



