MIDTERM 2 - REVIEW - SOLUTIONS

PEYAM RYAN TABRIZIAN

1a. $\operatorname{Rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Row}(A))=5$ $\operatorname{dim}(\operatorname{Nul}(A))=1$

1b. Basis for $\operatorname{Row}(A)$:

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
1 \\
-13 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Basis for $\operatorname{Col}(A)$:

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-2 \\
-2
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
6 \\
0 \\
-1
\end{array}\right]\right\}
$$

2. $\left[\begin{array}{l}11 \\ 16\end{array}\right]$
3. $\mathbf{v}=\left[\begin{array}{c}1 \\ -\sqrt{2} \\ 1\end{array}\right]$ (or any other nonzero eigenvector corresponding to the eigenvalue $\lambda=-2+\sqrt{2}$)
4.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2 \\
1 & 0 & 0
\end{array}\right]
$$

[^0]5. $\hat{\mathbf{x}}=\left[\begin{array}{l}3 / 4 \\ 1 / 4\end{array}\right] ; \sqrt{13} / 2$ (for the orthogonal projection-method, remember to apply Gram-Schmidt to the columns of A)
6. $\left(0, \frac{\pi}{2}\right)$
7. $y(t)=54+B e^{-2 t}$
8. Because I didn't have time to go through this, you can find more detailed explanations below.

8a. $y_{p}(t)=\left(A t^{2}+B t+C\right) t^{2} e^{t}$
8b. $y_{p}(t)=(A t+B) t e^{t} \cos (2 t)+\left(A^{\prime} t+B^{\prime}\right) t e^{t} \sin (2 t)$
8c. $y_{p}(t)=A e^{t} \cos (3 t)+B e^{t} \sin (3 t)$
8d. $y_{p}(t)=A e^{2 t} \cos (2 t)+B e^{2 t} \sin (2 t)$
8e. $y_{p}(t)=\left(A t^{2}+B t+C\right) \cos (2 t)+\left(A^{\prime} t^{2}+B^{\prime} t+C^{\prime}\right) \sin (2 t)$
8f. $y_{p}(t)=t^{3}(A t+B)$

More detailed explanations for 8:

First, find the homogeneous solution $y_{0}(t)$.
The auxiliary equation is $r^{3}(r-1)^{2}\left(r^{2}-2 r+5\right)=0$, which gives you $r=0$ (triple root), $r=1$ (double root) and $r=1 \pm 2 i$, so the solution to the homogeneous equation is:

$$
y_{0}(t)=A+B t+C t^{2}+D e^{t}+E t e^{t}+F e^{t} \cos (2 t)+G e^{t} \sin (2 t)
$$

(a) $\underline{f(t)=t^{2} e^{t}}$

For t^{2}, guess $A t^{2}+B t+C$ (IMPORTANT: This is OK, even though it coincides with y_{0}; this 'coinciding'-rule doesn't apply to polynomials, but see (f))

For e^{t}, guess e^{t}, but this coincides with y_{0}, so guess $t e^{t}$, but this also coincides with y_{0}, so guess $t^{2} e^{t}$, which works.

Multiplying both terms, we get $y_{p}(t)=\left(A t^{2}+B t+C\right) t^{2} e^{t}$
(b) $\underline{f(t)=t e^{t} \cos (2 t)}$

For t, guess $A t+B$
For $e^{t} \cos (2 t)$, guess $A e^{t} \cos (2 t)+B e^{t} \sin (2 t)$, but this coincides with y_{0}, so guess $A t e^{t} \cos (2 t)+B t e^{t} \sin (2 t)$.

Multiplying both terms, we get: $y_{p}(t)=(A t+B) t e^{t} \cos (2 t)+\left(A^{\prime} t+B^{\prime}\right) t e^{t} \sin (2 t)$
(c) $\underline{f(t)=e^{t} \cos (3 t)}$

Here guess $y_{p}(t)=A e^{t} \cos (3 t)+B e^{t} \sin (3 t)$, which doesn't coincide with y_{0} (it's important to treat $e^{t} \cos (3 t)$ as a whole; even though e^{t} coincides with $y_{0}, e^{t} \cos (3 t)$ doesn't)
(d) $\underline{f(t)=e^{2 t} \cos (2 t)}$

Here guess $y_{p}(t)=A e^{2 t} \cos (2 t)+B e^{2 t} \sin (2 t)$, which doesn't coincide with y_{0}.
(e) $\underline{f(t)=t^{2} \sin (2 t)}$

For t^{2}, guess $A t^{2}+B t+C$ (again OK, even though it coincides with y_{0})

For $\sin (2 t)$, guess $A \cos (2 t)+B \sin (2 t)$, which doesn't coincide with y_{0} (it's important to treat $e^{t} \sin (2 t)$ as a whole; even though $e^{t} \sin (2 t)$ coincides with $y_{0}, \sin (3 t)$ alone doesn't)

Multiplying both terms, guess:

$$
y_{p}(t)=\left(A t^{2}+B t+C\right) \cos (2 t)+\left(A^{\prime} t^{2}+B^{\prime} t+C^{\prime}\right) \sin (2 t)
$$

(f) $\frac{f(t)=t}{}$

This is the only tricky-case! Here think of t as being $t e^{0 t}$

For t, guess $A t+B$
For $e^{0 t}=1$, guess A, but this coincides with y_{0}, so guess $A t$, which coincides with y_{0}, so guess $A t^{2}$, which coincides with y_{0}, so guess $A t^{3}$, which doesn't coincide with y_{0}.

Multiplying both terms, we get: $y_{p}(t)=(A t+B) t^{3}$

[^0]: Date: Tuesday, April 14, 2015.

