MIDTERM 2 - REVIEW - SOLUTIONS

PEYAM RYAN TABRIZIAN

- 1a. $Rank(A) = \dim(Col(A)) = \dim(Row(A)) = 5$ $\dim(Nul(A)) = 1$
- 1b. Basis for Row(A):

$ \begin{cases} \begin{bmatrix} 1\\1\\-2\\0\\1\\-2 \end{bmatrix} \end{cases} $	$, \begin{bmatrix} 0\\1\\-1\\0\\-3\\-1 \end{bmatrix}, $	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ -13 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 0\\0\\0\\1\\-1\end{bmatrix},$	$\left[\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{matrix} \right]$
--	---	--	--	--

Basis for Col(A):

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$

Date: Tuesday, April 14, 2015.

PEYAM RYAN TABRIZIAN

- 5. $\hat{\mathbf{x}} = \begin{bmatrix} 3/4\\ 1/4 \end{bmatrix}$; $\sqrt{13}/2$ (for the orthogonal projection-method, remember to apply Gram-Schmidt to the columns of A)
- 6. $(0, \frac{\pi}{2})$
- 7. $y(t) = 54 + Be^{-2t}$
- 8. Because I didn't have time to go through this, you can find more detailed explanations below.

8a.
$$y_p(t) = (At^2 + Bt + C)t^2e^t$$

8b. $y_p(t) = (At + B)te^t \cos(2t) + (A't + B')te^t \sin(2t)$
8c. $y_p(t) = Ae^t \cos(3t) + Be^t \sin(3t)$
8d. $y_p(t) = Ae^{2t} \cos(2t) + Be^{2t} \sin(2t)$
8e. $y_p(t) = (At^2 + Bt + C)\cos(2t) + (A't^2 + B't + C')\sin(2t)$
8f. $y_p(t) = t^3(At + B)$

More detailed explanations for 8:

First, find the homogeneous solution $y_0(t)$.

The auxiliary equation is $r^3(r-1)^2(r^2-2r+5) = 0$, which gives you r = 0 (triple root), r = 1 (double root) and $r = 1 \pm 2i$, so the solution to the homogeneous equation is:

$$y_0(t) = A + Bt + Ct^2 + De^t + Ete^t + Fe^t \cos(2t) + Ge^t \sin(2t)$$

(a) $f(t) = t^2 e^t$

For t^2 , guess $At^2 + Bt + C$ (**IMPORTANT:** This is OK, even though it coincides with y_0 ; this 'coinciding'-rule doesn't apply to polynomials, but see (f))

For e^t , guess e^t , but this coincides with y_0 , so guess te^t , but this also coincides with y_0 , so guess t^2e^t , which works.

Multiplying both terms, we get $y_p(t) = (At^2 + Bt + C)t^2e^t$

(b) $f(t) = te^t \cos(2t)$

For t, guess At + B

For $e^t \cos(2t)$, guess $Ae^t \cos(2t) + Be^t \sin(2t)$, but this coincides with y_0 , so guess $Ate^t \cos(2t) + Bte^t \sin(2t)$.

Multiplying both terms, we get: $y_p(t) = (At + B)te^t \cos(2t) + (A't + B')te^t \sin(2t)$

(c)
$$f(t) = e^t \cos(3t)$$

Here guess $y_p(t) = Ae^t \cos(3t) + Be^t \sin(3t)$, which doesn't coincide with y_0 (it's important to treat $e^t \cos(3t)$ as a whole; even though e^t coincides with y_0 , $e^t \cos(3t)$ doesn't)

(d)
$$f(t) = e^{2t} \cos(2t)$$

Here guess $y_p(t) = Ae^{2t}\cos(2t) + Be^{2t}\sin(2t)$, which doesn't coincide with y_0 .

(e)
$$f(t) = t^2 \sin(2t)$$

For t^2 , guess $At^2 + Bt + C$ (again OK, even though it coincides with y_0)

For $\sin(2t)$, guess $A\cos(2t) + B\sin(2t)$, which doesn't coincide with y_0 (it's important to treat $e^t \sin(2t)$ as a *whole*; even though $e^t \sin(2t)$ coincides with y_0 , $\sin(3t)$ alone doesn't)

Multiplying both terms, guess:

$$y_p(t) = (At^2 + Bt + C)\cos(2t) + (A't^2 + B't + C')\sin(2t)$$

(f)
$$\underline{f(t)} = t$$

This is the only tricky-case! Here think of t as being te^{0t}

For t, guess At + B

For $e^{0t} = 1$, guess A, but this coincides with y_0 , so guess At, which coincides with y_0 , so guess At^2 , which coincides with y_0 , so guess At^3 , which doesn't coincide with y_0 .

Multiplying both terms, we get: $y_p(t) = (At + B)t^3$