Midterm 2 - Review - Problems

Peyam Ryan Tabrizian

Tuesday, April 14th, 2015

1 Vector space-stuff

Problem 1

Consider

	[1	1	-2	0	1	-2		[1	1	-2	0	1	-2
	1	2	-3	0	-2	-3		0	1	-1	0	-3	-1
A =	1	-1	0	0	1	6	~	0	0	1	1	-13	-1
	1	-2	2	1	-3	0		0	0	0	0	1	-1
	1	-2	1	0	2	-1_{-1}		0	0	0	0	0	1

(a) Find Rank(A), $\dim(Col(A))$, $\dim(Row(A))$, $\dim(Nul(A))$

(b) Find a basis for Row(A) and a basis for Col(A)

Problem 2

If $\mathcal{B} = \{-1 + 8t, 1 - 5t\}$ and $\mathcal{C} = \{1 + 4t, 1 + t\}$, find $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$ and use this to calculate $[p]_{\mathcal{B}}$ given p = 1(1 + 4t) + 4(1 + t).

2 Diagonalization

Problem 3

Find a nonzero vector **v** such that $\lim_{n\to\infty} A^n \mathbf{v} = \mathbf{0}$, where:

$$A = \begin{bmatrix} -2 & 1 & 0\\ 1 & -2 & 1\\ 0 & 1 & -2 \end{bmatrix}$$

3 Linear transformations

Problem 4

Let $T: P_2 \longrightarrow M_{2 \times 2}$ be the following linear transformation:

$$T(p) = \begin{bmatrix} p(0) & p'(1) \\ p''(2) & p(0) \end{bmatrix}$$

Find the matrix T with respect to the basis $\mathcal{B} = \{1, t, t^2\}$ of P_2 and the basis $\mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ of $M_{2 \times 2}$

4 Orthogonal projections and Least-squares

Problem 5

Find the least squares solution and the least-squares error to $A\mathbf{x} = \mathbf{b}$, where:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Do it directly, and do it using orthogonal projections.

5 Differential Equations

Problem 6

Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$\tan(t)y'' + (t-1)y' + 3y = \tan^2(t)$$

with $y\left(\frac{1}{2}\right) = 0, \ y'\left(\frac{1}{2}\right) = 1.$

Problem 7

Find all the solutions to y''' - 5y''' - 2y'' + 24y' = 0 such that $\lim_{t\to\infty} y(t) = 54$

Problem 8

Guess the form of a particular solution of:

$$D^{3}(D-1)^{2} \left(D^{2} - 2D + 5 \right)(y) = f(t)$$

where:

- (a) $f(t) = t^2 e^t$
- (b) $f(t) = te^t \cos(2t)$
- (c) $f(t) = e^t \cos(3t)$
- (d) $f(t) = e^{2t} \cos(2t)$
- (e) $f(t) = t^2 \sin(2t)$
- (f) f(t) = t