Midterm 2 - Review - Problems

Peyam Ryan Tabrizian

Tuesday, April 14th, 2015

1 Vector space-stuff

Problem 1

Consider

$$
A=\left[\begin{array}{cccccc}
1 & 1 & -2 & 0 & 1 & -2 \\
1 & 2 & -3 & 0 & -2 & -3 \\
1 & -1 & 0 & 0 & 1 & 6 \\
1 & -2 & 2 & 1 & -3 & 0 \\
1 & -2 & 1 & 0 & 2 & -1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 1 & -2 & 0 & 1 & -2 \\
0 & 1 & -1 & 0 & -3 & -1 \\
0 & 0 & 1 & 1 & -13 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find $\operatorname{Rank}(A), \operatorname{dim}(\operatorname{Col}(A)), \operatorname{dim}(\operatorname{Row}(A)), \operatorname{dim}(N u l(A))$
(b) Find a basis for $\operatorname{Row}(A)$ and a basis for $\operatorname{Col}(A)$

Problem 2

If $\mathcal{B}=\{-1+8 t, 1-5 t\}$ and $\mathcal{C}=\{1+4 t, 1+t\}$, find $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$ and use this to calculate $[p]_{\mathcal{B}}$ given $p=1(1+4 t)+4(1+t)$.

2 Diagonalization

Problem 3

Find a nonzero vector \mathbf{v} such that $\lim _{n \rightarrow \infty} A^{n} \mathbf{v}=\mathbf{0}$, where:

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

3 Linear transformations

Problem 4

Let $T: P_{2} \longrightarrow M_{2 \times 2}$ be the following linear transformation:

$$
T(p)=\left[\begin{array}{cc}
p(0) & p^{\prime}(1) \\
p^{\prime \prime}(2) & p(0)
\end{array}\right]
$$

Find the matrix T with respect to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ of P_{2} and the basis $\mathcal{C}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ of $M_{2 \times 2}$

4 Orthogonal projections and Least-squares

Problem 5

Find the least squares solution and the least-squares error to $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2 \\
0 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

Do it directly, and do it using orthogonal projections.

5 Differential Equations

Problem 6

Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$
\tan (t) y^{\prime \prime}+(t-1) y^{\prime}+3 y=\tan ^{2}(t)
$$

with $y\left(\frac{1}{2}\right)=0, y^{\prime}\left(\frac{1}{2}\right)=1$.

Problem 7

Find all the solutions to $y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}-2 y^{\prime \prime}+24 y^{\prime}=0$ such that $\lim _{t \rightarrow \infty} y(t)=54$

Problem 8

Guess the form of a particular solution of:

$$
D^{3}(D-1)^{2}\left(D^{2}-2 D+5\right)(y)=f(t)
$$

where:
(a) $f(t)=t^{2} e^{t}$
(b) $f(t)=t e^{t} \cos (2 t)$
(c) $f(t)=e^{t} \cos (3 t)$
(d) $f(t)=e^{2 t} \cos (2 t)$
(e) $f(t)=t^{2} \sin (2 t)$
(f) $f(t)=t$

