MATH 54 - MIDTERM 3

PEYAM RYAN TABRIZIAN

Name:

Instructions: This midterm counts for 20% of your grade. You officially have 90 minutes to take this exam. May your luck be diagonalizable! :)

1		10
2		15
3		30
4		25
5		20
Bonus		2
Total		100

Date: Friday, July 27th, 2012.

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) If A is diagonalizable, then A^{3} is diagonalizable.
(b) If A is a 3×3 matrix with 3 (linearly independent) eigenvectors, then A is diagonalizable
(c) If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is invertible
(d) If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is (always) diagonalizable
(e) If A is a 3×3 matrix with eigenvalues $\lambda=1,2,2$, then A is (always) not diagonalizable

(a)	
(b)	
(c)	
(d)	
(e)	

2. (15 points) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!

IMPORTANT NOTE: If A is diagonalizable, explain why! And if A is not diagonalizable, show why it isn't!
(a) (5 points) If A is diagonalizable, then A is invertible.
(b) (10 points, longer) If A is invertible, then A is diagonalizable

54/Math 54 Summer/Exams/Justification.jpg

C:/Users/Peyam/Berkeley/Math 54/Math 54 Summer/Exams/Justifica
3. (30 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

Note: Show all your work!
Helps: In case you're stuck:

- For 5 points, I can give you one root of the characteristic polynomial (ask me about it)
- For 10 points, I can give you the full characteristic polynomial! (ask me about it)
(Continuation)

4. (25 points) Solve the following system $\mathrm{x}^{\prime}=A \mathrm{x}$, where:

$$
A=\left[\begin{array}{ccc}
0 & 5 & 0 \\
-1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Note: Show all your work!
(Continuation)
5. (20 points, 10 points each)

Find the general solution to $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(a) (10 points) Using undetermined coefficients
(b) (10 points) Using variation of parameters

Note: Simplify your answer!

Bonus (2 points)
(a) (0 points, but it'll help you for (b)) What is the general solution of $y^{\prime \prime}=-b^{2} y$
(b) (2 points) Use (a) and the ideas we talked about in lecture about the matrix exponential function to solve the following system $\mathrm{x}^{\prime \prime}=A \mathrm{x}$ (note the double prime), where:

$$
A=\left[\begin{array}{cc}
2 & -3 \\
6 & 7
\end{array}\right]
$$

Hint: You may use the fact that $A=-B^{2}$, where $B=\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$ as well as the fact that $B=P D P^{-1}$, where $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Note: Converting this into a first-order system differential equations is a complete waste of time! Do it directly using the hint above!

Note: This problem is a tiny bit long, but you really need to write down the final answer to get full credit!
(Continuation)
(Scratch work)

Any comments about this exam? (too long? too hard?)

