MATH 54 – MOCK FINAL EXAM

PEYAM RYAN TABRIZIAN

Instructions: This is a mock final, designed to give you an idea of what the actual final will look like!

1	10
2	15
3	15
4	30
5	15
6	15
Total	100

Date: Friday, August 10th, 2012.

1. (10 points, 2 points each)

Label the following statements as T or F. Write your answers in the box below!

NOTE: In this question, you do **NOT** have to show your work! Don't spend *too* much time on each question!

- (a) If Q has orthogonal columns, then Q is an orthogonal matrix
- (b) If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on W, then $\mathbf{x} \hat{\mathbf{x}}$ is always orthogonal to $\hat{\mathbf{x}}$.
- (c) The least-squares solution $\widetilde{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ has the property that $||A\mathbf{x} \mathbf{b}|| \le ||A\widetilde{\mathbf{x}} \mathbf{b}||$ for every \mathbf{x}
- (d) If a set \mathcal{B} is orthogonal, then \mathcal{B} is linearly independent
- (e) $\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} c \\ d \end{bmatrix} = ac$ defines a dot/inner product on \mathbb{R}^2 .

(a)	
(b)	
(c)	
(d)	
(e)	

2. (15 points) Use the Gram-Schmidt process to find an orthonormal basis for W, where:

$$W = Span \left\{ \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix} \right\}$$

3. (15 points) Find the least-squares solution and least-squares error to the following (inconsistent) system of equations $A\mathbf{x} = \mathbf{b}$, where:

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

4. (30 points) Solve the following heat equation:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} & 0 < x < 1, \quad t > 0 \\ u(0,t) = u(1,t) = 0 & t > 0 \\ u(x,0) = x & 0 < x < 1 \end{cases}$$

Note: You may not use **ANY** for the formulas given in the book! You have to do it from scratch, including the 3 cases.

Note: The following formula might be useful:

$$\int_{-1}^{1} \cos^2(\pi mx) = \int_{-1}^{1} \sin^2(\pi mx) = 1$$

(Scratch work)

5. (15 points)

(a) (10 points) Find the Fourier cosine series of $f(x)=x^2$ on $(0,\pi)$

That is, find A_m such that:

$$x^{2} " = " \sum_{m=0}^{\infty} A_m \cos(mx) \quad \text{on}(0,\pi)$$

Hint: The following formula might be useful:

$$\int_{-\pi}^{\pi} \cos^2(mx) = \int_{-\pi}^{\pi} \sin^2(mx) = \pi$$

(b) (5 points) Draw the graph of the function to which the above Fourier series ${\cal F}$ converges to on $(-3\pi,3\pi)$

6. (15 points)

Prove the parallelogram identity:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

Note: Do it in general, not just for \mathbb{R}^n