MIDTERM 1 - REVIEW - PROBLEMS

PEYAM RYAN TABRIZIAN

1. Linear equations

Problem 1: Solve the following system (or say it has no solutions):

$$
\left\{\begin{array}{c}
2 x+2 y+z=2 \\
3 x+4 y+2 z=3 \\
x+2 y+z=1
\end{array}\right.
$$

2. Inverses

Problem 2. Find the inverse of the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Problem 3. Is the following matrix invertible?

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Hint: This is a one-liner!

3. Linear Transformations

Problem 4. Assume $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates points in the plane clockwise by $\frac{\pi}{2}$ radians. Find the matrix of T.

Date: Tuesday, February 24, 2015.

Problem 5. Define $T: P_{3} \rightarrow P_{4}$ by:

$$
T(p)=\int_{0}^{t} p(x) d x
$$

(Basically, $T(p)$ is the antiderivative of p without the constant)
(a) Show T is a linear transformation
(b) Find $\operatorname{Nul}(T)$. Is T one-to-one?
(c) Find $\operatorname{Ran}(T)$. Is T onto P_{4} ?

4. Determinants

Problem 6. Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
2 & 0 & 0 & 3 \\
3 & 1 & 4 & 7 \\
1 & 1 & 0 & 3
\end{array}\right]
$$

Problem 7. Find $\operatorname{det}(A)$, where:

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
5 & 6 & 7 & 8 & 9
\end{array}\right] \\
& \text { 5. } \operatorname{Nul}(A), \operatorname{Col}(A)
\end{aligned}
$$

Problem 8.

(a) For the following matrix A, find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Nul}(A)$
(c) Find $\operatorname{dim}(\operatorname{Col}(A))$ and $\operatorname{dim}(\operatorname{Nul}(A))$

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 9 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

6. Coordinates

Problem 9. Let $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{c}2 \\ -5\end{array}\right]\right\}$. Find $[\mathbf{x}]_{\mathcal{B}}$, where $\mathbf{x}=\left[\begin{array}{l}5 \\ 7\end{array}\right]$
Problem 10. Find the coordinates of $p=1+2 x-x^{2}$ with respect to $\mathcal{B}=\left\{x^{2},-1+x, x+x^{2}\right\}$

7. Vector spaces

Problem 11. Show that the set of $n \times n$ symmetric matrices forms a vector space.

