MATH 54 - MOCK MIDTERM 1

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is a mock midterm, designed to give you extra practice for the actual midterm. Good luck!!!

1		15
2		20
3		10
4		10
5		10
6		10
7		15
8		10
Total		100

1. (15 points) Solve the following system (or say it has no solutions):

$$
\left\{\begin{array}{c}
x+y+z=0 \\
2 x+2 z=0 \\
3 x+y+3 z=0
\end{array}\right.
$$

2. (20 points) Find the inverse of the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]
$$

3. (10 points) What's the next elementary row operation you would use to transform the following matrix in row-echelon form? What is the corresponding elementary matrix?

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

4. (10 points, 5 points each) Evaluate the following products if they are defined, or say 'undefined'
(a) $A B$, where:

$$
A=\left[\begin{array}{cc}
2 & 5 \\
0 & 7 \\
-1 & 3
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(b) $A B$, where:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & -1 & 0
\end{array}\right], B=\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

5. (10 points) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation which reflects points in the plane about the origin.
(a) (5 points) Find the matrix A of T.
(b) (5 points) Use A to find $T(1,1)$.
6. (10 points) Find the determinant of the following matrix A :

$$
A=\left[\begin{array}{cccccc}
1 & 42 & 536 & 789 & 4201 & 123456789 \\
0 & 1 & 2012 & 2014 & \pi m & \text { Dolphin } \\
0 & 0 & 2 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 2 & -1
\end{array}\right]
$$

7. $(15=10+5$ points $)$
(a) Find a basis for $\operatorname{Col}(A)$, where:

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 0 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

(b) What is $\operatorname{dim}(\operatorname{Col}(A))$?
8. (10 points) Find a basis for $\operatorname{Nul}(A)$ and a basis for $\operatorname{Col}(A)$, where A is the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & -1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

