Math 54. Solutions to Sample First Midterm

1. (10 points) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 7 \\ 1 & 1 & 2 \end{bmatrix}$, if it exists. Use the algorithm introduced in Chapter 2.

The algorithm uses row reduction of the matrix $\begin{bmatrix} A & I \end{bmatrix}$:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 6 & 7 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 2 & 1 & -2 & 1 & 0 \\ 0 & -1 & -1 & -1 & 0 & 1 \\ 0 & 2 & 1 & -2 & 1 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 1 \\ 0 & 0 & -1 & -4 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -11 & 3 & 6 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ 0 & 0 & -1 & -4 & 1 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & -5 & 1 & 4 \\ 0 & 1 & 0 & -5 & 1 & 4 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ 0 & 0 & -1 & -4 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -5 & 1 & 4 \\ 0 & 1 & 0 & -3 & 1 & 1 \\ 0 & 0 & 1 & 4 & -1 & -2 \end{bmatrix}$$
$$\begin{bmatrix} -5 & 1 & 4 \end{bmatrix}$$

Therefore the inverse is
$$\begin{bmatrix} -5 & 1 & 4 \\ -3 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$$
.

2. (10 points) A matrix A and an echelon form of A are given here:

(a). Write the solution set of the homogeneous system $A\vec{x} = \vec{0}$ in parametric vector form (i.e., as a linear combination of fixed vectors, in which the weights are allowed to take on arbitrary values).

Continuing the row reduction gives the following matrix in reduced echelon form:

This gives equations $x_1 = -2x_2 + 3x_5$, $x_3 = x_4 + 2x_5$. The other variables are free, so we have the following solution in parametric vector form:

	$\lceil -2 \rceil$		F 07		[3]	
x_2	1	$+x_{4}$	0		0	
	0		1	$+x_{5}$	2	
	0		1		0	
					$\lfloor 1 \rfloor$	

(b). Give a basis of $\operatorname{Nul} A$.

The above three vectors form a basis:

$\lceil -2 \rceil$	7	[0]		[3]	
1		0		0	
0	,	1	,	2	
0		1		0	
		Lol		$\lfloor 1 \rfloor$	

(c). Give a basis of $\operatorname{Col} A$.

The pivot columns are the first and third columns, so use these columns of the original matrix A:

$$\begin{bmatrix} 1\\ -2\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} -1\\ 3\\ -3\\ -2 \end{bmatrix}.$$
3. (12 points) Let $\vec{v}_1 = \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2\\ 0\\ 3\\ -1 \end{bmatrix}, \text{ and } \vec{v}_3 = \begin{bmatrix} 4\\ 1\\ 6\\ -2 \end{bmatrix}.$ Let $H = \text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$

(a). Find a subset of $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}\,$ that is a basis for H . Explain how you know it is a basis for H .

•

•

Row reduce the matrix $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$:

٢O	2	4 -		Γ^1	0	1 -		Γ1	0	ך 1		$\lceil 1 \rceil$	0	1٦	
1	0	1	\sim	0	2	4	~	0	1	2	~	0	1	$2 \mid$	
0	3	6		0	3	6		0	3	6		0	0	0	
LΟ	-1	-2		LΟ	-1	-2		LO	-1	$-2 \rfloor$		LΟ	0	0	

In the last matrix, it is easy to see that the third column equals the first column plus twice the second, which therefore also is true of the original matrix: $v_3 = v_1 + 2v_2$. So, the vectors are linearly dependent and do not give a basis.

However, H = Col A, so $\{\vec{v}_1, \vec{v}_2\}$ is a basis for H because those are the pivot columns.

Alternatively, you can use the Spanning Set Theorem in Section 4.3.

(b). Let \mathcal{B} be the basis you found in part (a), and let $\vec{x} = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$. Find the \mathcal{B} -coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x} .

We have $\vec{x} = \vec{v}_1 + \vec{v}_2 + \vec{v}_3 = \vec{v}_1 + \vec{v}_2 + (v_1 + 2v_2) = 2v_1 + 3v_2$, so

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix} .$$

4. (8 points) Let A be an $m \times n$ matrix, and let \vec{b} and \vec{c} be vectors in \mathbb{R}^m . Assume that both equations $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{c}$ are consistent. Explain why the equation $A\vec{x} = \vec{b} + 7\vec{c}$ is consistent.

Since $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{c}$ are consistent, \vec{b} and \vec{c} lie in Col A. Since Col A is a subspace, $7\vec{c}$ and therefore $\vec{b} + 7\vec{c}$ also lie in Col A. Thus, $A\vec{x} = \vec{b} + 7\vec{c}$ is consistent, because if $\vec{a}_1, \ldots, \vec{a}_n$ are the columns of A then

$$\vec{b} + 7\vec{c} = x_1\vec{a}_1 + \dots + x_n\vec{a}_n$$

for some x_1, \ldots, x_n , and then $\vec{x} = (x_1, \ldots, x_n)$ is a solution of $A\vec{x} = \vec{b} + 7\vec{c}$.

5. (10 points) Use Cramer's Rule to solve for x_2 in the linear system

$$2x_1 + 3x_3 = 2 3x_1 + 5x_3 = 3 8x_1 + x_2 = 0$$

$$x_{2} = \frac{\begin{vmatrix} 2 & 2 & 3 \\ 3 & 3 & 5 \\ 8 & 0 & 0 \end{vmatrix}}{\begin{vmatrix} 2 & 0 & 3 \\ 3 & 0 & 5 \\ 8 & 1 & 0 \end{vmatrix}} = \frac{8 \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix}}{-\begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix}} = \frac{8(10-9)}{-(10-9)} = \frac{8}{-1} = -8.$$

(For the first step, we expanded the numerator about the bottom row and the denominator about the second column.)