Math 54. Solutions to Sample First Midterm

1. (10 points) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 6 & 7 \\ 1 & 1 & 2\end{array}\right]$, if it exists. Use the algorithm introduced in Chapter 2.

The algorithm uses row reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$:

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 6 & 7 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 2 & 1 & -2 & 1 & 0 \\
0 & -1 & -1 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -1 & -1 & -1 & 0 & 1 \\
0 & 2 & 1 & -2 & 1 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & -1 & -1 & -1 & 0 & 1 \\
0 & 0 & -1 & -4 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 0 & -11 & 3 & 6 \\
0 & -1 & 0 & 3 & -1 & -1 \\
0 & 0 & -1 & -4 & 1 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & -5 & 1 & 4 \\
0 & -1 & 0 & 3 & -1 & -1 \\
0 & 0 & -1 & -4 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & -5 & 1 & 4 \\
0 & 1 & 0 & -3 & 1 & 1 \\
0 & 0 & 1 & 4 & -1 & -2
\end{array}\right]
\end{aligned}
$$

Therefore the inverse is $\left[\begin{array}{ccc}-5 & 1 & 4 \\ -3 & 1 & 1 \\ 4 & -1 & -2\end{array}\right]$.
2. (10 points) A matrix A and an echelon form of A are given here:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
-2 & -4 & 3 & -3 & 0 \\
1 & 2 & -3 & 3 & 3 \\
1 & 2 & -2 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a). Write the solution set of the homogeneous system $A \vec{x}=\overrightarrow{0}$ in parametric vector form (i.e., as a linear combination of fixed vectors, in which the weights are allowed to take on arbitrary values).

Continuing the row reduction gives the following matrix in reduced echelon form:

$$
\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -3 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

This gives equations $x_{1}=-2 x_{2}+3 x_{5}, x_{3}=x_{4}+2 x_{5}$. The other variables are free, so we have the following solution in parametric vector form:

$$
x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

(b). Give a basis of $\operatorname{Nul} A$.

The above three vectors form a basis:

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

(c). Give a basis of $\operatorname{Col} A$.

The pivot columns are the first and third columns, so use these columns of the original matrix A :

$$
\left[\begin{array}{c}
1 \\
-2 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
3 \\
-3 \\
-2
\end{array}\right]
$$

3. (12 points) Let $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}2 \\ 0 \\ 3 \\ -1\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{c}4 \\ 1 \\ 6 \\ -2\end{array}\right]$. Let $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(a). Find a subset of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ that is a basis for H. Explain how you know it is a basis for H.

Row reduce the matrix $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$:

$$
\left[\begin{array}{ccc}
0 & 2 & 4 \\
1 & 0 & 1 \\
0 & 3 & 6 \\
0 & -1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 4 \\
0 & 3 & 6 \\
0 & -1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 3 & 6 \\
0 & -1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In the last matrix, it is easy to see that the third column equals the first column plus twice the second, which therefore also is true of the original matrix: $v_{3}=v_{1}+2 v_{2}$. So, the vectors are linearly dependent and do not give a basis.

However, $H=\operatorname{Col} A$, so $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis for H because those are the pivot columns.

Alternatively, you can use the Spanning Set Theorem in Section 4.3.
(b). Let \mathcal{B} be the basis you found in part (a), and let $\vec{x}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}$. Find the \mathcal{B}-coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x}.

We have $\vec{x}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}=\vec{v}_{1}+\vec{v}_{2}+\left(v_{1}+2 v_{2}\right)=2 v_{1}+3 v_{2}$, so

$$
[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

4. (8 points) Let A be an $m \times n$ matrix, and let \vec{b} and \vec{c} be vectors in \mathbb{R}^{m}. Assume that both equations $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$ are consistent. Explain why the equation $A \vec{x}=\vec{b}+7 \vec{c}$ is consistent.

Since $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$ are consistent, \vec{b} and \vec{c} lie in $\operatorname{Col} A$. Since $\operatorname{Col} A$ is a subspace, $7 \vec{c}$ and therefore $\vec{b}+7 \vec{c}$ also lie in $\operatorname{Col} A$. Thus, $A \vec{x}=\vec{b}+7 \vec{c}$ is consistent, because if $\vec{a}_{1}, \ldots, \vec{a}_{n}$ are the columns of A then

$$
\vec{b}+7 \vec{c}=x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}
$$

for some x_{1}, \ldots, x_{n}, and then $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a solution of $A \vec{x}=\vec{b}+7 \vec{c}$.
5. (10 points) Use Cramer's Rule to solve for x_{2} in the linear system

$$
\begin{gathered}
\begin{array}{c}
2 x_{1} \\
3 x_{1} \\
+3 x_{3}=2 \\
8 x_{1}+x_{2} \quad=3
\end{array} \\
x_{2}=\frac{\left|\begin{array}{lll}
2 & 2 & 3 \\
3 & 3 & 5 \\
8 & 0 & 0
\end{array}\right|}{\left|\begin{array}{lll}
2 & 0 & 3 \\
3 & 0 & 5 \\
8 & 1 & 0
\end{array}\right|}=\frac{8\left|\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right|}{-\left|\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right|}=\frac{8(10-9)}{-(10-9)}=\frac{8}{-1}=-8
\end{gathered}
$$

(For the first step, we expanded the numerator about the bottom row and the denominator about the second column.)

