Math 54 Sample First Midterm

1. (10 points) Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 6 & 7 \\ 1 & 1 & 2\end{array}\right]$, if it exists. Use the algorithm introduced in Chapter 2.
2. (10 points) A matrix A and an echelon form of A are given here:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
-2 & -4 & 3 & -3 & 0 \\
1 & 2 & -3 & 3 & 3 \\
1 & 2 & -2 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a). Write the solution set of the homogeneous system $A \vec{x}=\overrightarrow{0}$ in parametric vector form (i.e., as a linear combination of fixed vectors, in which the weights are allowed to take on arbitrary values).
(b). Give a basis of $\operatorname{Nul} A$.
(c). Give a basis of $\operatorname{Col} A$.
3. (12 points) Let $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}2 \\ 0 \\ 3 \\ -1\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{c}4 \\ 1 \\ 6 \\ -2\end{array}\right]$. Let $H=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.
(a). Find a subset of $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ that is a basis for H. Explain how you know it is a basis for H.
(b). Let \mathcal{B} be the basis you found in part (a), and let $\vec{x}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}$. Find the \mathcal{B}-coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x}.
4. (8 points) Let A be an $m \times n$ matrix, and let \vec{b} and \vec{c} be vectors in \mathbb{R}^{m}. Assume that both equations $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$ are consistent. Explain why the equation $A \vec{x}=\vec{b}+7 \vec{c}$ is consistent.
5. (10 points) Use Cramer's Rule to solve for x_{2} in the linear system

$$
\begin{aligned}
2 x_{1}+3 x_{3} & =2 \\
3 x_{1}+5 x_{3} & =3 \\
8 x_{1}+x_{2} & =0
\end{aligned}
$$

