MATH 54 - MIDTERM 1 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 2 pts each)

Label the following statements as TRUE (T) or FALSE (F).
(a) TRUE If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a pivot in the last column, then the system $A \mathrm{x}=\mathrm{b}$ has no solution.
(that's because there's a row of the form $\left[\begin{array}{llll}0 & 0 & \cdots & 0\end{array}\right]$, where $b \neq 0$)
(b) $\frac{\text { FALSE }}{A^{-1} B^{-1}}$ If A and B are invertible 2×2 matrices, then $(A B)^{-1}=$ (it's $(A B)^{-1}=B^{-1} A^{-1}$, reverse order)
(c) TRUE If A is a 3×3 matrix such that the system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{3}.
(the IMT implies that A is invertible, and the IMT again implies the desired result)
(d) TRUE The general solution to $A \mathrm{x}=\mathrm{b}$ is of the form $\mathrm{x}=$ $\mathbf{x}_{p}+\mathbf{x}_{0}$, where \mathbf{x}_{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{x}_{0} is the general solution to $A \mathrm{x}=\mathbf{0}$.
(See section 1.5)
(e) TRUE If P and D are $n \times n$ matrices, then $\operatorname{det}\left(P D P^{-1}\right)=$ $\operatorname{det}(D)$

$$
\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(D) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(D) \frac{1}{\operatorname{det}(P)}=\operatorname{det}(D)
$$

(a)	T
(b)	F
(c)	T
(d)	T
(e)	T

2. (10 points, 5 points each) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!
(a) FALSE If A and B are any 2×2 matrices, then $A B=B A$

Take for example, $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Then:

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right], \quad B A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right]
$$

which are not equal to each other!
(in fact, almost any two matrices you chose will give you a counterexample! The most important thing is that you had to find explicit A and B and you had to show that $A B \neq B A$)
(b) TRUE The matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0\end{array}\right]$ is not invertible.

Notice that the first and the third column of the matrix are equal, hence the columns of A are linearly dependent, so by
the IMT A is not invertible!

Note: Many many other answers were possible! For example, you could calculate $\operatorname{det}(A)=0$, or you could row-reduce and say that the matrix has only 2 pivots. Any of those answers is acceptable!
3. (15 points) Solve the following system of equations (or say it has no solutions):

$$
\left\{\begin{array}{c}
2 x+2 y+z=2 \\
3 x+4 y+2 z=3 \\
x+2 y-z=-3
\end{array}\right.
$$

Write down the augmented matrix and row-reduce:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 2 & 1 & 2 \\
3 & 4 & 2 & 3 \\
1 & 2 & -1 & -3
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
2 & 2 & 1 & 2 \\
3 & 4 & 2 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
0 & -2 & 3 & 8 \\
0 & -2 & 5 & 12
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
0 & -2 & 3 & 8 \\
0 & 0 & 2 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
0 & -2 & 3 & 8 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & -3 \\
0 & -2 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \hline\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Hence the solution is:

$$
\left\{\begin{array}{c}
x=1 \\
y=-1 \\
z=2
\end{array}\right.
$$

4. (20 points) Solve the following system $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & -3 \\
2 & 3 & 1 & -6 \\
-1 & 2 & -4 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
8 \\
3
\end{array}\right]
$$

Write your answer in (parametric) vector form

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 1 & 1 & -3 & 3 \\
2 & 3 & 1 & -6 & 8 \\
-1 & 2 & -4 & 3 & 3
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 1 & -3 & 3 \\
0 & 1 & -1 & 0 & 2 \\
0 & 3 & -3 & 0 & 6
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 1 & -3 & 3 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & -3 & 1 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Now rewrite this as a system (careful about the variables!):

$$
\begin{gathered}
\left\{\begin{array}{c}
x+2 z-3 t=1 \\
y-z=2 \\
(z=z) \\
(t=t)
\end{array}\right. \\
\left\{\begin{array}{c}
x=1-2 z+3 t \\
y=2+z \\
(z=z) \\
(t=t)
\end{array}\right.
\end{gathered}
$$

Hence, in vector form, this becomes:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
1-2 z+3 t \\
2+z \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 z \\
z \\
z \\
0
\end{array}\right]+\left[\begin{array}{c}
3 t \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
3 \\
0 \\
0 \\
1
\end{array}\right]
$$

5. (15 points, 5 points each)
(a) Calculate $A B$, or say that $A B$ is undefined.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

This is defined, and $A B$ is a 3×3 matrix:

$$
A B=\left[\begin{array}{cc}
2 & 1 \\
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
4 & 1 & 3 \\
2 & 2 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

(b) Calculate $A B$, or say that $A B$ is undefined.

$$
A=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 2 \\
3 & 0
\end{array}\right]
$$

$A B$ is undefined because A is 3×1 and B is 3×2, and $1 \neq 3$.
(c) Calculate A^{2}, where:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
A^{2}=A A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Note: If you're smart about this, you recognize A as the matrix which interchanges the 2 rows of a 2×2 matrix, so applying A
twice should just give you the identity matrix (i.e. the matrix that does 'nothing')!
6. (15 points) Find A^{-1} (or say ' A is not invertible') where:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 1 \\
2 & 0 & -1
\end{array}\right]
$$

Form the (super) augmented matrix and row-reduce:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right] } & =\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 0 & -1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & -1 & 0 \\
0 & -4 & -7 & -2 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & -1 & 0 \\
0 & 0 & 1 & 2 & -4 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & -3 & 7 & -2 \\
0 & 0 & 1 & 2 & -4 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -3 & 7 & -2 \\
0 & 0 & 1 & 2 & -4 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
I & A^{-1}
\end{array}\right]
\end{aligned}
$$

Hence

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-3 & 7 & -2 \\
2 & -4 & 1
\end{array}\right]
$$

7. (15 points) Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & 1 \\
2 & 0 & 4 & 0 & 5 \\
1 & 2 & 5 & -2 & 0 \\
2 & 0 & 3 & 0 & 1 \\
0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

First expand along the second column (be careful about the sign!)

$$
\operatorname{det}(A)=-2\left|\begin{array}{cccc}
1 & 0 & 3 & 1 \\
2 & 4 & 0 & 5 \\
2 & 3 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right|
$$

Then expand along the third column:

$$
\operatorname{det}(A)=(-2)(3)\left|\begin{array}{ccc}
2 & 4 & 5 \\
2 & 3 & 1 \\
0 & 1 & -1
\end{array}\right|=(-6)\left|\begin{array}{ccc}
2 & 4 & 5 \\
2 & 3 & 1 \\
0 & 1 & -1
\end{array}\right|
$$

Now expand along the last row:

$$
\begin{aligned}
\operatorname{det}(A) & =(-6)\left((-1)\left|\begin{array}{ll}
2 & 5 \\
2 & 1
\end{array}\right|+(-1)\left|\begin{array}{ll}
2 & 4 \\
2 & 3
\end{array}\right|\right)==(-6)(8+2)=-60 \\
& \text { So } \operatorname{det}(A)=-60
\end{aligned}
$$

Bonus (3 points) Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{llll}
1 & x & x^{2} & x^{3} \\
1 & y & y^{2} & y^{3} \\
1 & z & z^{2} & z^{3} \\
1 & t & t^{2} & t^{3}
\end{array}\right]
$$

The trick is to row-reduce A (but you have to be careful about the order!

First, add (-1) times the first row to the second, third, and fourth rows while keeping the first row fixed (remember that this doesn't change the determinant):

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & y-x & y^{2}-x^{2} & y^{3}-x^{3} \\
0 & z-x & z^{2}-x^{2} & z^{3}-x^{3} \\
0 & t-x & t^{2}-x^{2} & t^{3}-x^{3}
\end{array}\right|
$$

Now notice that $y^{2}-x^{2}=(y-x)(y+x)$, and $y^{3}-x^{3}=$ $(y-x)\left(y^{2}+x y+x^{2}\right)$, and so you can 'factor' out $(y-x)$ from the second row:

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & (y-x) & (y-x)(y+x) & (y-x)\left(y^{2}+y x+x^{2}\right) \\
0 & z-x & z^{2}-x^{2} & z^{3}-x^{3} \\
0 & t-x & t^{2}-x^{2} & t^{3}-x^{3}
\end{array}\right| \\
& =(y-x)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+y x+x^{2} \\
0 & z-x & z^{2}-x^{2} & z^{3}-x^{3} \\
0 & t-x & t^{2}-x^{2} & t^{3}-x^{3}
\end{array}\right|
\end{aligned}
$$

But you can apply the exact same reasoning to the third and the fourth row, to get:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+x y+x^{2} \\
0 & 1 & z+x & z^{2}+x z+x^{2} \\
0 & 1 & t+x & t^{2}+x t+x^{2}
\end{array}\right|
$$

But now, add (-1) times the second row to the third row and the fourth row (all while leaving the second row fixed), to get:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+x y+x^{2} \\
0 & 0 & z-y & z^{2}-y^{2}+x z-x y \\
0 & 0 & t-y & t^{2}-y^{2}+x t-x y
\end{array}\right|
$$

But $z^{2}-y^{2}+x z-x y=(z-y)(z+y)+(z-y) x=(z-y)(z+$ $y+x)=(z-y)(x+y+z)$, so you can factor out $(z-y)$ from the third row:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)(z-y)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+x y+x^{2} \\
0 & 0 & 1 & x+y+z \\
0 & 0 & t-y & t^{2}-y^{2}+x t-x y
\end{array}\right|
$$

Similarly, you can factor out $(t-y)$ from the fourth row:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)(z-y)(t-y)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+x y+x^{2} \\
0 & 0 & 1 & x+y+z \\
0 & 0 & 1 & x+y+t
\end{array}\right|
$$

Finally, add (-1) times the third row to the fourth row:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)(z-y)(t-y)\left|\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & y+x & y^{2}+x y+x^{2} \\
0 & 0 & 1 & x+y+z \\
0 & 0 & 0 & t-z
\end{array}\right|
$$

But this last matrix is upper-triangular, hence its determinant is $(1)(1)(1)(t-z)$, and we finally get:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)(z-y)(t-y)(t-z)
$$

The way to read this is as follows:
First fix x (the first variable), then take products of differences of the other variables with x, i.e. $(y-x)(z-x)(t-x)$.

Then fix y (the second variable), and take products of differences of all the other variables (except for x) with y, i.e. $(z-y)(t-y)$.

Finally, fix z (the next-to-last variable), and take products of differences of all the other variables (except for x and y) with z, i.e. $(t-z)$.

And then take the product of everything you found to get:

$$
\operatorname{det}(A)=(y-x)(z-x)(t-x)(z-y)(t-y)(t-z)
$$

In fact, there's a (natural) generalization of this! Google 'Vandermonde matrix' to learn more about this!

