MATH 54 - QUIZ 1 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (5 points) Using the reduced row-echelon form, find the general solution of the linear system corresponding to the following augmented matrix.

$$
\left[\begin{array}{cccc}
2 & -3 & 5 & 5 \\
1 & -2 & -1 & -5 \\
3 & -4 & 11 & 15
\end{array}\right]
$$

First interchange the first and second rows (it's better to have 1's on top):

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
2 & -3 & 5 & 5 \\
3 & -4 & 11 & 15
\end{array}\right]
$$

Now subtract 2 times the first row from the second, and 3 times the first row from the third:

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 1 & 7 & 15 \\
0 & 2 & 14 & 30
\end{array}\right]
$$

Now divide the third row by 2 :

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 1 & 7 & 15 \\
0 & 1 & 7 & 15
\end{array}\right]
$$

And subtract the second row from the third:

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 1 & 7 & 15 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This is in row-echelon form, but we want the reduced row-echelon form. For this, add 2 times the second row to the first:

$$
\left[\begin{array}{cccc}
1 & 0 & 13 & 25 \\
0 & 1 & 7 & 15 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which gives
$\left\{\begin{array}{l}x_{1}+13 x_{3}=25 \\ x_{2}+7 x_{3}=15 \\ x_{3}=x_{3}\end{array} \Rightarrow\left\{\begin{array}{l}x_{1}=25-13 x_{3} \\ x_{2}=15-7 x_{3} \\ x_{3}=x_{3}\end{array}=\left[\begin{array}{c}25 \\ 15 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-13 \\ -7 \\ 1\end{array}\right]\right.\right.$
where x_{3} is free.
2. (5 points) For what c is $\left[\begin{array}{l}c \\ 0 \\ c\end{array}\right]$ in Span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}c \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\right\}$?

In other words, we'd like to see for which c there are $x_{1}, x_{2}, x_{3}, x_{4}$ such that:

$$
x_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{l}
c \\
1 \\
1
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
c \\
0 \\
-c
\end{array}\right]
$$

In other words, the question is: for which c is the following system consistent:

$$
\begin{cases}x_{1}+x_{2}+c x_{3}+x_{4} & =c \\ -x_{2}+x_{3}+2 x_{4} & =0 \\ x_{1}+2 x_{2}+x_{3}-x_{4} & =-c\end{cases}
$$

Let's find the row-echelon form of the augmented matrix:

$$
\left[\begin{array}{ccccc}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 0 \\
1 & 2 & 1 & -1 & -c
\end{array}\right]
$$

Substracting the first row from the third, we get:

$$
\left[\begin{array}{ccccc}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 0 \\
0 & 1 & 1-c & -2 & -2 c
\end{array}\right]
$$

Adding the second row to the third, we get:

$$
\left[\begin{array}{ccccc}
1 & 1 & c & 1 & c \\
0 & -1 & 1 & 2 & 0 \\
0 & 0 & 2-c & 0 & -2 c
\end{array}\right]
$$

By the Fact discussed in section, this system has a solution if and only if $2-c \neq 0$ (otherwise we'd have a row of the form $\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & \star\end{array}\right]$, where $\star \neq 0$), which gives $c \neq 2$

