MATH 54 - QUIZ 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (4 points) Determine for which c the following vectors are linearly independent:

$$
\left[\begin{array}{c}
3 \\
-6 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right],\left[\begin{array}{l}
9 \\
c \\
3
\end{array}\right]
$$

All we need to do is to row-reduce the matrix:

$$
\left[\begin{array}{cccc}
3 & -6 & 9 & 0 \\
-6 & 4 & c & 0 \\
1 & -3 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 18+c & 0
\end{array}\right]
$$

In order for the vectors to be linearly independent, by the Useful Test 2 (covered in section on Tuesday), the number of pivots needs to be equal to the number of columns of A (otherwise the equation $A \mathrm{x}=\mathbf{0}$ has a free variable), which is 3 . Therefore we need 3 pivots, which means we need $18+c \neq 0$, so $c \neq-18$.
2. (6 points total) Suppose $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ is a linear transformation such that:

$$
T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad T\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1+4 c \\
2+2 c
\end{array}\right]
$$

(a) (4 points) Find the matrix of T

The only thing that's left to figure out is $T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Now notice that because T is linear, we have:

$$
T\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]=2 T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(-1) T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+2 T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=2\left[\begin{array}{l}
2 \\
4
\end{array}\right]+(-1)\left[\begin{array}{l}
3 \\
6
\end{array}\right]+2 T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2 T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence:

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2 T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=T\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1+4 c \\
2+2 c
\end{array}\right]
$$

And so, solving for $T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, we get:

$$
T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\frac{1}{2}\left(\left[\begin{array}{l}
1+4 c \\
2+2 c
\end{array}\right]-\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 c \\
c
\end{array}\right]
$$

And therefore, the matrix of T is:

$$
A=\left[T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]=\left[\begin{array}{ccc}
2 & 3 & 2 c \\
4 & 6 & c
\end{array}\right]
$$

(b) (1 point) For which c is T one-to-one? Justify briefly

Row-reducing A, we get:

$$
A=\left[\begin{array}{rrr}
2 & 3 & 2 c \\
4 & 6 & c
\end{array}\right] \longrightarrow\left[\begin{array}{rrr}
2 & 3 & 2 c \\
0 & 0 & c
\end{array}\right]
$$

In order for T to be one-to-one, we need to have as many pivots in A as columns (otherwise the equation $A \mathbf{x}=\mathbf{0}$ has a free variable), so we need 3 pivots, but this is impossible as there
can only be 2 pivots at most. Hence T is never one-to-one
(c) (1 point) For which c is T onto \mathbb{R}^{2} ? Justify briefly

In order for T to be onto \mathbb{R}^{2}, we need to have as many pivots in A as rows (otherwise the equation $A \mathbf{x}=\mathbf{b}$ isn't always consistent), so we need 2 pivots, which means that we need to have $c \neq 0$

