MATH 54 - QUIZ 4 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (4 points) Recall that a matrix A is symmetric if and only if $A^{T}=A$. Does the set of $n \times n$ symmetric matrices (with real entries) form a vector space? Justify carefully.

Let W be the set of $n \times n$ symmetric matrices. We want to show that W is a subspace of $V=M_{n \times n}$, the set of all $n \times n$ matrices (with real entries)

All we need to show that the zero-matrix is in W, and that W is closed under addition and scalar multiplication.

Zero-vector: The $n \times n$ zero-matrix O satisfies $O^{T}=O$, therefore O is in W

Closed under addition: Suppose A and B are in W. Then $A^{T}=$ A and $B^{T}=B$. But then, by properties of transpose:

$$
(A+B)^{T}=A^{T}+B^{T}=A+B
$$

And therefore $A+B$ is symmetric. Since A and B were arbitrary in W, it follows that W is closed under addition

Closed under scalar multiplication: Suppose A in in W and c is a real number, then $A^{T}=0$, and so, by properties of transposes:

$$
(c A)^{T}=c\left(A^{T}\right)=c A
$$

And therefore $c A$ is symmetric. Since A and c were arbitrary, it follows that W is closed under multiplication.

Therefore, W is a subspace of V, and hence a vector space.
2. (2 points) Is the following set W a subspace of \mathbb{R}^{2} ? Justify briefly.

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=0\right\}
$$

Notice that $x^{2}+y^{2}=0$ implies $x=0$ and $y=0$, so W is nothing other than $\{(0,0)\}$, the zero vector-space, which is a subspace of \mathbb{R}^{2}. Therefore, W is a subspace of \mathbb{R}^{2}.
3. (4 points) Find an explicit description of $\operatorname{Nul}(A)$ by writing it as the span of some vectors, where A is the following matrix:

$$
A=\left[\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
1 & 2 & -4 & 10 & 13 & -12 \\
1 & -1 & -1 & 1 & 1 & -3 \\
1 & -3 & 1 & -5 & -7 & 3 \\
1 & -2 & 0 & 0 & -5 & -4
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since the right-hand-side is not in reduced row-echelon form, let's further row-reduce it:

$$
\left[\begin{array}{cccccc}
1 & 1 & -3 & 7 & 9 & -9 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & -2 & 4 & 5 & -6 \\
0 & 1 & -1 & 3 & 4 & -3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & -2 & 0 & 9 & 2 \\
0 & 1 & -1 & 0 & 7 & 3 \\
0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(I first subtracted the second row from the first, and then subtracted 3 times the third row from the second and 4 times the third row from the first)

Now if $A \mathbf{x}=\mathbf{0}$, where $\mathbf{x}=\left[\begin{array}{c}x \\ y \\ z \\ t \\ s \\ r\end{array}\right]$, then we get:

$$
\left\{\begin{array}{c}
x-2 z+9 s+2 r=0 \\
y-z+7 s+3 r=0 \\
t-s-2 r=0
\end{array}\right.
$$

That is:

$$
\left\{\begin{array}{c}
x=2 z-9 s-2 r \\
y=z-7 s-3 r \\
t=s+2 r
\end{array}\right.
$$

Hence we get:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
2 z-9 s-2 r \\
z-7 s-3 r \\
z \\
s+2 r \\
s \\
r
\end{array}\right]=z\left[\begin{array}{l}
2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-9 \\
-7 \\
0 \\
1 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

And therefore:

$$
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-9 \\
-7 \\
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

(in fact, you'll see later that this set is also a basis for $\operatorname{Nul}(A)$)

