MATH 54 - QUIZ 5 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (5 points) For the following matrix A, find:
$A=\left[\begin{array}{cccccc}1 & 1 & -3 & 7 & 9 & -9 \\ 1 & 2 & -4 & 10 & 13 & -12 \\ 1 & -1 & -1 & 1 & 1 & -3 \\ 1 & -3 & 1 & -5 & -7 & 3 \\ 1 & -2 & 0 & 0 & -5 & -4\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 1 & -3 & 7 & 9 & -9 \\ 0 & 1 & -1 & 3 & 4 & -3 \\ 0 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) A basis for $\operatorname{Row}(A)$

The pivots are in the first three rows of A, hence a basis for $\operatorname{Row}(A)$ is:

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-3 \\
7 \\
9 \\
-9
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
3 \\
4 \\
-3
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1 \\
-2
\end{array}\right]\right\}
$$

(b) A basis for $\operatorname{Col}(A)$

The pivots are in the first, second, and fourth columns of A, hence a basis for $\operatorname{Col}(A)$ is (remember to go back to the original columns of A):

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-3 \\
-2
\end{array}\right],\left[\begin{array}{c}
7 \\
10 \\
1 \\
-5 \\
0
\end{array}\right]\right\}
$$

Date: Thursday, March 5, 2015.
(c) $\operatorname{Rank}(A)$
$\operatorname{Rank}(A)=$ number of pivots of $A=3$
(d) $\operatorname{dim} \operatorname{Nul}(A)$

By the rank-theorem, $\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=6$ (number of columns of A), hence $\operatorname{dim} \operatorname{Nul}(A)=6-\operatorname{rank}(A)=6-3=3$
2. (5 points) Let $\mathcal{A}=\left\{\left[\begin{array}{c}-1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -7\end{array}\right]\right\}$ and $\mathcal{D}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.

Use a change-of-coordinates matrix to find $[\mathbf{x}]_{\mathcal{A}}$ given

$$
[\mathbf{x}]_{\mathcal{D}}=\left[\begin{array}{c}
1 \\
-3
\end{array}\right]
$$

We have:

$$
[\mathbf{x}]_{\mathcal{A}}=P_{\mathcal{A} \leftarrow \mathcal{D}}[\mathbf{x}]_{\mathcal{D}}
$$

Now to find $P_{\mathcal{A} \leftarrow \mathcal{D}}$, row-reduce:
$[\mathcal{A} \mid \mathcal{D}]=\left[\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 8 & -7 & 2 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 9 & 8 \\ 0 & 1 & 10 & 9\end{array}\right]=\left[I \mid P_{\mathcal{A} \leftarrow \mathcal{D}}\right]$
Therefore:

$$
P_{\mathcal{A} \leftarrow \mathcal{D}}=\left[\begin{array}{cc}
9 & 8 \\
10 & 9
\end{array}\right]
$$

And hence:

$$
[\mathbf{x}]_{\mathcal{A}}=P_{\mathcal{A} \leftarrow \mathcal{D}}[\mathbf{x}]_{\mathcal{D}}=\left[\begin{array}{cc}
9 & 8 \\
10 & 9
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{l}
-15 \\
-17
\end{array}\right]
$$

