MATH 54 - QUIZ 6 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (6 points)
(a) (4 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & -3 & 1 \\
-3 & -3 & 1
\end{array}\right]
$$

Eigenvalues:

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left[\begin{array}{ccc}
\lambda-1 & -1 & 1 \\
3 & \lambda+3 & -1 \\
3 & 3 & \lambda-1
\end{array}\right] \\
& =(\lambda-1)((\lambda+3)(\lambda-1)+3)+(3(\lambda-1)+3)+(9-3(\lambda+3)) \\
& =(\lambda-1)((\lambda+3)(\lambda-1)+3)+\not \lambda \not-\not \supset+\nexists+\not \supset-\nexists \chi-\not \supset \\
& =(\lambda-1)((\lambda+3)(\lambda-1)+3) \\
& =(\lambda-1)\left(\lambda^{2}+2 \lambda-3+3\right) \\
& =(\lambda-1)\left(\lambda^{2}+2 \lambda\right) \\
& =(\lambda-1)(\lambda)(\lambda+2) \\
& =0
\end{aligned}
$$

which gives us $\lambda=-2,0,1$

Eigenvectors:

$$
\underline{\lambda}=-2
$$

$\operatorname{Nul}(2 I-A)=N u l\left[\begin{array}{ccc}-3 & -1 & 1 \\ 3 & 1 & -1 \\ 3 & 3 & -3\end{array}\right] \rightarrow N u l\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$

Date: Thursday, March 12, 2015.
$\underline{\lambda=0}$ (I gave you that one)

$$
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

$\underline{\lambda=1}$ (I gave you that one)

$$
\operatorname{Nul}(I-A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

Answer:

$$
D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad P=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(b) (2 points) Suppose $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}$, where $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are the three eigenvectors you found above. Find $A^{2015} \mathbf{v}$

$$
\begin{aligned}
A^{2015} \mathbf{v} & =A^{2015}\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}\right) \\
& =A^{2015} \mathbf{v}_{\mathbf{1}}+A^{2015} \mathbf{v}_{\mathbf{2}}-A^{2015} \mathbf{v}_{\mathbf{3}} \\
& =(-2)^{2015}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+(0)^{2015}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]-1^{2015}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
(-2)^{2015}-1 \\
(-2)^{2015}-1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
-\left(2^{2015}\right)-1 \\
-\left(2^{2015}\right)-1
\end{array}\right]
\end{aligned}
$$

2. (4 points) Define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by:

$$
T(A)=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] A
$$

Find the matrix of T relative to the basis:

$$
\begin{gathered}
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { of } M_{2 \times 2} \\
T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \\
T\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \\
T\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-1 & 0
\end{array}\right] \sim\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0
\end{array}\right] \\
T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right] \sim\left[\begin{array}{c}
0 \\
2 \\
0 \\
-1
\end{array}\right]
\end{gathered}
$$

Hence the matrix of T is:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Note: It is incorrect to write $\left[\begin{array}{cccccccc}1 & 0 & 0 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1\end{array}\right]$. It's very important to convert the vectors you found into column vectors!!!

