MATH 54 - QUIZ 6

PEYAM RYAN TABRIZIAN

Name: \qquad
Instructions: You have 20 minutes to take this quiz, for a total of 10 points. May your luck be diagonalizable!

1. (6 points)
(a) (4 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & -3 & 1 \\
-3 & -3 & 1
\end{array}\right]
$$

Note: In order to save you some time, you may assume that an eigenvector of A corresponding to $\lambda=0$ is $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and an eigenvector corresponding to $\lambda=1$ is $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
(b) (2 points) Suppose $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}$, where $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are the three eigenvectors you found above. Find $A^{2015} \mathbf{v}$
2. (4 points) Define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by:

$$
T(A)=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] A
$$

Find the matrix of T relative to the basis:

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { of } M_{2 \times 2}
$$

