MATH 54 - QUIZ 7 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (7 points) Let $W=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, where $\mathbf{u}=\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 4\end{array}\right]$.

Find the orthogonal projection of $\mathrm{x}=\left[\begin{array}{c}3 \\ -1 \\ 2 \\ 1\end{array}\right]$ on W.

CAREFUL!!! The set $\{\mathbf{u}, \mathbf{v}\}$ is NOT orthogonal, so you CANNOT use the projection-formula directly! First, apply Gram-Schmidt to $\{\mathbf{u}, \mathbf{v}\}$ to get an orthogonal basis $\left\{\mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right\}$ of W :

$$
\begin{gathered}
\mathbf{u}^{\prime}=\mathbf{u}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right] \\
\hat{\mathbf{v}}=\left(\frac{\mathbf{v} \cdot \mathbf{u}^{\prime}}{\mathbf{u}^{\prime} \cdot \mathbf{u}^{\prime}}\right) \mathbf{u}^{\prime}=\left(\frac{9}{9}\right)\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right] \\
\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{u}^{\prime}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
4
\end{array}\right]-\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
2 \\
2
\end{array}\right]
\end{gathered}
$$

NOW you can apply the orthogonal projection formula of x to $W=\operatorname{Span}\left\{\mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right\}:$

$$
\hat{\mathbf{x}}=\left(\frac{\mathbf{x} \cdot \mathbf{u}^{\prime}}{\mathbf{u}^{\prime} \cdot \mathbf{u}^{\prime}}\right) \mathbf{u}^{\prime}+\left(\frac{\mathbf{x} \cdot \mathbf{v}^{\prime}}{\mathbf{v}^{\prime} \cdot \mathbf{v}^{\prime}}\right) \mathbf{v}^{\prime}=\left(\frac{1}{9}\right)\left[\begin{array}{c}
1 \\
0 \\
-2 \\
2
\end{array}\right]+\left(\frac{7}{9}\right)\left[\begin{array}{c}
0 \\
-1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 / 9 \\
-7 / 9 \\
4 / 3 \\
16 / 9
\end{array}\right]
$$

2. (3 points) Given a vector x and a subspace W, find a formula for the orthogonal projection of \mathbf{x} on W^{\perp}.

Hint: A picture might help!

The answer is $\mathrm{x}-\hat{\mathrm{x}}$ (where $\hat{\mathrm{x}}$ is the orthogonal projection of x on W), as illustrated in the following picture:

54/Math 54 - Spring 2015/Quizzes/Quiz 7.png

In this picture, x^{\prime} is the orthogonal projection of x on W^{\perp}. Notice that the green vector equals to the red vector, so $\mathbf{x}^{\prime}=\mathbf{x}-\hat{\mathbf{x}}$

