MATH 54 – TRUE/FALSE QUESTIONS FOR MIDTERM 1

PEYAM RYAN TABRIZIAN

- 1. (a) If the **augmented** matrix of the system $A\mathbf{x} = \mathbf{b}$ has a pivot in the last column, then the system $A\mathbf{x} = \mathbf{b}$ has no solution.
 - (b) If A and B are invertible 2×2 matrices, then $(AB)^{-1} = A^{-1}B^{-1}$
 - (c) If A is a 3 × 3 matrix such that the system Ax = 0 has only the trivial solution, then the equation Ax = b is consistent for every b in ℝ³.
 - (d) The general solution to $A\mathbf{x} = \mathbf{b}$ is of the form $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_0$, where \mathbf{x}_p is a *particular* solution to $A\mathbf{x} = \mathbf{b}$ and \mathbf{x}_0 is the *general* solution to $A\mathbf{x} = \mathbf{0}$.
 - (e) If P and D are $n \times n$ matrices, then $det(PDP^{-1}) = det(D)$

(f) If
$$T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}x\\0\end{bmatrix}$$
, then $Nul(T) = \operatorname{Span}\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}$

- (g) The set of polynomials \mathbf{p} in P_2 such that $\mathbf{p}(3) = 0$ is a subspace of P_2
- (h) \mathbb{R}^2 is a subspace of \mathbb{R}^3
- 2. (a) If A and B are any 2×2 matrices, then AB = BA

(b) The matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$
 is not invertible.
(c) The set of matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a subspace of $M_{2\times 2}$

Date: Friday, February 20th, 2015.

PEYAM RYAN TABRIZIAN

- (d) The matrix of the linear transformation T which reflects points in ℝ² about the x-axis and then about the y-axis is the same as the matrix of the linear transformation S which rotates points in ℝ² about the origin by 180 degrees counterclockwise.
- (e) The following set is a basis for P_2 : $\{1, 1+t, 1+t+t^2\}$
- (f) If V is a set that contains the 0-vector, and such that whenever \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u} + \mathbf{v}$ is in V, then V is a vector space!
- 3. (a) If A and B are square matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.
 - (b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one linear transformation, then T is also onto.
 - (c) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^n , then $\{v_1, v_2\}$ is linearly independent as well!
 - (d) If A is an invertible square matrix, then $(A^T)^{-1} = (A^{-1})^T$
 - (e) If A is a 3×3 matrix with two pivot positions, then the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - (f) If A and B are square matrices, then det(A + B) = det(A) + det(B).
 - (g) If $Nul(A) = \{0\}$, then A is invertible.
 - (h) \mathbb{R}^2 is a subspace of \mathbb{R}^3
 - (i) If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.
- 4. (a) If $Nul(A) = \{0\}$, then A is invertible
 - (b) If AB = I, then A is invertible
 - (c) If A is a 2×3 matrix, then $A\mathbf{x} = \mathbf{0}$ always has a nonzero solution

2

- (d) If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is one-to-one, then T is also onto \mathbb{R}^n
- (e) If A is $n \times n$ and has n pivots, then the columns of A form a basis for \mathbb{R}^n
- (f) If W is a subspace of V, and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W
- (g) The intersection of two subspaces of V is a subspace of V
- (h) The union of two subspaces of V is a subspace of V
- (i) If A and B are symmetric, then so is $AB + B^T A^T$
- (j) A system of 10 equations in 8 unknowns always has a nonzero solution