1. (a) If the augmented matrix of the system $Ax = b$ has a pivot in the last column, then the system $Ax = b$ has no solution.

(b) If A and B are invertible 2×2 matrices, then $(AB)^{-1} = A^{-1}B^{-1}$

(c) If A is a 3×3 matrix such that the system $Ax = 0$ has only the trivial solution, then the equation $Ax = b$ is consistent for every b in \mathbb{R}^3.

(d) The general solution to $Ax = b$ is of the form $x = x_p + x_0$, where x_p is a particular solution to $Ax = b$ and x_0 is the general solution to $Ax = 0$.

(e) If P and D are $n \times n$ matrices, then $\det(PDP^{-1}) = \det(D)$

(f) If $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$, then $\text{Nul}(T) = \text{Span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

(g) The set of polynomials p in P_2 such that $p(3) = 0$ is a subspace of P_2

(h) \mathbb{R}^2 is a subspace of \mathbb{R}^3

2. (a) If A and B are any 2×2 matrices, then $AB = BA$

(b) The matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0 \end{bmatrix}$ is not invertible.

(c) The set of matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a subspace of $M_{2 \times 2}$.

Date: Friday, February 20th, 2015.
(d) The matrix of the linear transformation T which reflects points in \mathbb{R}^2 about the x-axis and then about the y-axis is the same as the matrix of the linear transformation S which rotates points in \mathbb{R}^2 about the origin by 180 degrees counterclockwise.

(e) The following set is a basis for P_2: $\{1, 1 + t, 1 + t + t^2\}$

(f) If V is a set that contains the 0-vector, and such that whenever u and v are in V, then $u + v$ is in V, then V is a vector space!

3. (a) If A and B are square matrices, then $(A + B)^{-1} = A^{-1} + B^{-1}$.

(b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one linear transformation, then T is also onto.

(c) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^n, then $\{v_1, v_2\}$ is linearly independent as well!

(d) If A is an invertible square matrix, then $(A^T)^{-1} = (A^{-1})^T$.

(e) If A is a 3×3 matrix with two pivot positions, then the equation $Ax = 0$ has a nontrivial solution.

(f) If A and B are square matrices, then $\det(A + B) = \det(A) + \det(B)$.

(g) If $\text{Nul}(A) = \{0\}$, then A is invertible.

(h) \mathbb{R}^2 is a subspace of \mathbb{R}^3

(i) If W is a subspace of V and B is a basis for V, then some subset of B is a basis for W.

4. (a) If $\text{Nul}(A) = \{0\}$, then A is invertible

(b) If $AB = I$, then A is invertible

(c) If A is a 2×3 matrix, then $Ax = 0$ always has a nonzero solu-
(d) If $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is one-to-one, then T is also onto \mathbb{R}^n

(e) If A is $n \times n$ and has n pivots, then the columns of A form a basis for \mathbb{R}^n

(f) If W is a subspace of V, and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W

(g) The intersection of two subspaces of V is a subspace of V

(h) The union of two subspaces of V is a subspace of V

(i) If A and B are symmetric, then so is $AB + B^T A^T$

(j) A system of 10 equations in 8 unknowns always has a nonzero solution