MATH 54 - TRUE/FALSE QUESTIONS FOR MIDTERM 1

PEYAM RYAN TABRIZIAN

1. (a) If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a pivot in the last column, then the system $A \mathbf{x}=\mathrm{b}$ has no solution.
(b) If A and B are invertible 2×2 matrices, then $(A B)^{-1}=$ $A^{-1} B^{-1}$
(c) If A is a 3×3 matrix such that the system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then the equation $A \mathrm{x}=\mathrm{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{3}.
(d) The general solution to $A \mathbf{x}=\mathbf{b}$ is of the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{0}$, where \mathbf{x}_{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{x}_{0} is the general solution to $A \mathbf{x}=\mathbf{0}$.
(e) If P and D are $n \times n$ matrices, then $\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(D)$
(f) If $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$, then $\operatorname{Nul}(T)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(g) The set of polynomials \mathbf{p} in P_{2} such that $\mathbf{p}(3)=0$ is a subspace of P_{2}
(h) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
2. (a) If A and B are any 2×2 matrices, then $A B=B A$
(b) The matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0\end{array}\right]$ is not invertible.
(c) The set of matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is a subspace of $M_{2 \times 2}$.
(d) The matrix of the linear transformation T which reflects points in \mathbb{R}^{2} about the x-axis and then about the y-axis is the same as the matrix of the linear transformation S which rotates points in \mathbb{R}^{2} about the origin by 180 degrees counterclockwise.
(e) The following set is a basis for $P_{2}:\left\{1,1+t, 1+t+t^{2}\right\}$
(f) If V is a set that contains the 0 -vector, and such that whenever \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u}+\mathbf{v}$ is in V, then V is a vector space!
3. (a) If A and B are square matrices, then $(A+B)^{-1}=A^{-1}+B^{-1}$.
(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation, then T is also onto.
(c) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are linearly independent vectors in \mathbb{R}^{n}, then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is linearly independent as well!
(d) If A is an invertible square matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(e) If A is a 3×3 matrix with two pivot positions, then the equation $A \mathrm{x}=\mathbf{0}$ has a nontrivial solution.
(f) If A and B are square matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+$ $\operatorname{det}(B)$.
(g) If $\operatorname{Nul}(A)=\{\mathbf{0}\}$, then A is invertible.
(h) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
(i) If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.
4. (a) If $\operatorname{Nul}(A)=\{0\}$, then A is invertible
(b) If $A B=I$, then A is invertible
(c) If A is a 2×3 matrix, then $A \mathbf{x}=\mathbf{0}$ always has a nonzero solution
(d) If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is one-to-one, then T is also onto \mathbb{R}^{n}
(e) If A is $n \times n$ and has n pivots, then the columns of A form a basis for \mathbb{R}^{n}
(f) If W is a subspace of V, and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W
(g) The intersection of two subspaces of V is a subspace of V
(h) The union of two subspaces of V is a subspace of V
(i) If A and B are symmetric, then so is $A B+B^{T} A^{T}$
(j) A system of 10 equations in 8 unknowns always has a nonzero solution
