MATH 54 - TRUE/FALSE QUESTIONS FOR MIDTERM 1 SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) TRUE If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a pivot in the last column, then the system $A \mathrm{x}=\mathrm{b}$ has no solution.
(that's because there's a row of the form $\left[\begin{array}{llll}0 & 0 & \cdots & 0\end{array}\right]$, where $b \neq 0$)
(b) $\frac{\text { FALSE }}{A^{-1} B^{-1}}$ If A and B are invertible 2×2 matrices, then $(A B)^{-1}=$ (it's $(A B)^{-1}=B^{-1} A^{-1}$, reverse order)
(c) TRUE If A is a 3×3 matrix such that the system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{3}.
(the IMT implies that A is invertible, and the IMT again implies the desired result)
(d) TRUE The general solution to $A \mathrm{x}=\mathbf{b}$ is of the form $\mathrm{x}=$ $\mathbf{x}_{p}+\mathbf{x}_{0}$, where \mathbf{x}_{p} is a particular solution to $A \mathbf{x}=\mathbf{b}$ and \mathbf{x}_{0} is the general solution to $A \mathrm{x}=\mathbf{0}$.
(See section 1.5)
(e) $\frac{\text { TRUE }}{\operatorname{det}(D)}$ If P and D are $n \times n$ matrices, then $\operatorname{det}\left(P D P^{-1}\right)=$
$\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(D) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(D) \frac{1}{\operatorname{det}(P)}=\operatorname{det}(D)$

> (f) FALSE If $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$, then $\operatorname{Nul}(T)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ $\operatorname{Nul}(T)=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ s.t. $\left.\left[\begin{array}{l}x \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ s.t. $\left.x=0\right\}=\left\{\left[\begin{array}{l}0 \\ y\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
(g) TRUE The set of polynomials \mathbf{p} in P_{2} such that $\mathbf{p}(3)=0$ is a subspace of P_{2}
(You can easily check that the 0-polynomial is in it, that it is closed under addition and scalar multiplication)
(h) FALSE \mathbb{R}^{2} is a subspace of \mathbb{R}^{3} (it's not even a subset of $\mathbb{R}^{3}!!!$)
(a) FALSE If A and B are any 2×2 matrices, then $A B=B A$

Take for example, $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Then:

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right], \quad B A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right]
$$

which are not equal to each other!
(in fact, almost any two matrices you chose will give you a counterexample! The most important thing is that you had to find explicit A and B and you had to show that $A B \neq B A$)
(b) TRUE The matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0\end{array}\right]$ is not invertible.

Notice that the first and the third column of the matrix are equal, hence the columns of A are linearly dependent, so by the IMT A is not invertible!

Note: Many many other answers were possible! For example, you could calculate $\operatorname{det}(A)=0$, or you could row-reduce and
say that the matrix has only 2 pivots. Any of those answers is acceptable!
(c) TRUE The set of matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ is a subspace of $M_{2 \times 2}$.
If you denote that set by V, then you get:

$$
V=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

And since the span of anything is a vector space, V is a vector space, and hence a subspace of $M_{2 \times 2}$.

Alternatively you could have shown in the usual way that the O matrix is in it, and that it is closed under addition and scalar multiplication.
(d) TRUE The matrix of the linear transformation T which reflects points about the x-axis and then about the y-axis is the same as the matrix of the linear transformation S which rotates points about the origin by 180 degrees counterclockwise.

Calculate $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$
Hence the matrix of T is $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
Calculate $S\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ and $S\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]$
Hence the matrix of S is $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
And notice the two matrices are the same!
2. (e) TRUE The following set is a basis for $P_{2}:\left\{1,1+t, 1+t+t^{2}\right\}$.

Linear independence: Suppose $a(1)+b(1+t)+c\left(1+t+t^{2}\right)=0$, then $(a+b+c)+(b+c) t+c t^{2}=0$, hence $c=0$, hence $b=0$, hence $a=0$, hence $a=b=c=0$, and the polynomials are
linearly independent.

Span: Since P_{2} is 3 -dimensional, and the set contains 3 elements, hence the set also spans P_{2}

Therefore the set is a basis for P_{2}.

Note: There were many, many, many other ways to show why this is true! One way is to consider the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and notice its determinant is $1 \neq 0$, hence it is invertible, hence its columns are linearly independent and span \mathbb{R}^{3}.
(f) FALSE If V is a set that contains the $\mathbf{0}$-vector, and such that whenever \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u}+\mathbf{v}$ is in V, then V is a vector space!

Consider the set $V=\left\{\left[\begin{array}{l}x \\ y\end{array}\right], y \geq 0\right\}$ in \mathbb{R}^{2}. (i.e. the upper-half-plane)
$\underline{0 \text {-vector: }}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is in it!
 V, then $y \geq 0$ and $y^{\prime} \geq 0$. Then $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}x+x^{\prime} \\ y+y^{\prime}\end{array}\right]$. But since $y+y^{\prime} \geq 0$, we get $\mathbf{u}+\mathbf{v}$ is in V

Not closed under scalar multiplication: For example, $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is in V, but $(-2) \mathbf{u}=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$ is not in V.
3. (a) If A and B are square matrices, then $(A+B)^{-1}=A^{-1}+B^{-1}$.

FALSE

For example, take $A=[2]$ and $B=[3]$. Then the statement says: Is $\frac{1}{2+3}=\frac{1}{2}+\frac{1}{3}$? Which is not true.
Other explanation: Take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, then $A+B$ is the zero matrix, whose inverse is not defined, while the right-hand-side gives you 0 .
(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation, then T is also onto.

TRUE

Let A be the matrix of T. Then, if T is one-to-one, then A is invertible (by one of the conditions of invertibility), and hence, by another condition of invertibility, this implies that T is onto. Note that is works precisely because $m=n$, the result doesn't hold in general!
(c) If $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ are linearly independent vectors in \mathbb{R}^{n}, then $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is linearly independent as well!

TRUE

Suppose $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=\mathbf{0}$.
Goal: We want to show $a=b=0$.
Now here's a clever trick: Add $0 \mathbf{v}_{\mathbf{3}}=\mathbf{0}$ to both sides of the equation.

Then we get: $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+0 \mathbf{v}_{\mathbf{3}}=\mathbf{0}$
In particular, if we let $c=0$, then we get: $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+c \mathbf{v}_{\mathbf{3}}=\mathbf{0}$
But $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent, so $a=b=c=0$.
In particular $a=b=0$, which we wanted to show!

Note: I have to admit, this is a tricky proof! But it illustrates why it's important to write down what you want to show and what you know!
(d) If A is an invertible square matrix, then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

TRUE

Let $B=\left(A^{-1}\right)^{T}$. All we need to show is that $A^{T} B=B A^{T}=$ I, because then $B=\left(A^{T}\right)^{-1}$, which is what we want to show.

But:

$$
A^{T} B=A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I
$$

Where in the first step, we used the property of transposes $(C D)^{T}=D^{T} C^{T}$.
Similarly:

$$
B A^{T}=\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I
$$

Hence $A^{T} B=B A^{T}=I$, which is what we needed to show!
(e) If A is a 3×3 matrix with two pivot positions, then the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.

TRUE
If A has two pivot positions, then it has a row of zeros, and hence, because A is a 3×3 matrix, the solution $A \mathbf{x}=\mathbf{0}$ has at least one free variable, hence the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution!
(f) If A and B are square matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+$ $\operatorname{det}(B)$.

FALSE

For example, take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
Then $\operatorname{det}(A)=1, \operatorname{det}(B)=1$, but $\operatorname{det}(A+B)=\operatorname{det}(O)=0$ (where O is the zero-matrix).
(g) If $\operatorname{Nul}(A)=\{\mathbf{0}\}$, then A is invertible.

FALSE

Don't worry, this got me too! This statement is true if A is SQUARE ! But if A is not square, this statement is never true!

For example, let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. Then $\operatorname{Nul}(A)=\{0\}$, but A is not invertible, because it is not square.
(h) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}

FALSE!

\mathbb{R}^{2} is not even a subset of \mathbb{R}^{3} !!! Don't confuse this with $\left\{\left.\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$, which is a subspace of \mathbb{R}^{3} and very similar to \mathbb{R}^{2} (but not exactly the same)
(i) If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.

FALSE

This is also very tricky (this got me too :)), because the 'opposite' statement does hold, namely if \mathcal{B} is a basis for W, you can always complete \mathcal{B} to become a basis of V (this is the 'basis
extension theorem').
As a counterexample, take $V=\mathbb{R}^{3}, \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$,
and $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}\left(a\right.$ line in $\left.\mathbb{R}^{3}\right)$.
If the statement was true, then one of the vectors in \mathcal{B} would be a basis for W, but this is bogus.
4. (a) FALSE
(b) FALSE
(c) TRUE
(d) TRUE
(e) TRUE
(f) FALSE (Take $V=\mathbb{R}^{2}$ with the standard basis, and $W=$ $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. You cannot delete vectors from the standard basis to form a basis for W)
(g) TRUE
(h) FALSE
(i) TRUE
(j) FALSE

