MATH 54 – TRUE/FALSE QUESTIONS FOR MIDTERM 1 – SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) **TRUE** If the **augmented** matrix of the system $A\mathbf{x} = \mathbf{b}$ has a pivot in the last column, then the system $A\mathbf{x} = \mathbf{b}$ has no solution.

(that's because there's a row of the form $\begin{bmatrix} 0 & 0 & \cdots & 0 & b \end{bmatrix}$, where $b \neq 0$)

(b) **FALSE** If A and B are invertible 2×2 matrices, then $(AB)^{-1} = A^{-1}B^{-1}$

 $(it's (AB)^{-1} = B^{-1}A^{-1}, reverse order)$

(c) **TRUE** If A is a 3×3 matrix such that the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every **b** in \mathbb{R}^3 .

(the IMT implies that A is invertible, and the IMT again implies the desired result)

(d) **TRUE** The general solution to $A\mathbf{x} = \mathbf{b}$ is of the form $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_0$, where \mathbf{x}_p is a *particular* solution to $A\mathbf{x} = \mathbf{b}$ and \mathbf{x}_0 is the *general* solution to $A\mathbf{x} = \mathbf{0}$.

(See section 1.5)

(e) **TRUE** If P and D are $n \times n$ matrices, then $det(PDP^{-1}) = det(D)$

$$det(PDP^{-1}) = det(P)det(D)det(P^{-1}) = det(P)det(D)\frac{1}{det(P)} = det(D)$$

Date: Friday, February 20th, 2015.

(f) **FALSE** If
$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
, then $Nul(T) = \text{Span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$
 $Nul(T) = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \text{ s.t. } \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \text{ s.t. } x = 0 \right\} = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

(g) **TRUE** The set of polynomials \mathbf{p} in P_2 such that $\mathbf{p}(3) = 0$ is a subspace of P_2

(You can easily check that the 0-polynomial is in it, that it is closed under addition and scalar multiplication)

- (h) **FALSE** \mathbb{R}^2 is a subspace of \mathbb{R}^3 (it's not even a *subset* of \mathbb{R}^3 !!!)
- (a) **FALSE** If A and B are any 2×2 matrices, then AB = BA

Take for example,
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Then:
 $AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $BA = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$

which are not equal to each other!

(in fact, almost any two matrices you chose will give you a counterexample! The most important thing is that you had to find explicit A and B and you had to show that $AB \neq BA$)

(b) **TRUE** The matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$
 is not invertible.

Notice that the first and the third column of the matrix are equal, hence the columns of A are linearly dependent, so by the IMT A is not invertible!

Note: Many many other answers were possible! For example, you could calculate det(A) = 0, or you could row-reduce and

say that the matrix has only 2 pivots. Any of those answers is acceptable!

(c) **TRUE** The set of matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ is a subspace of $M_{2\times 2}$.

If you denote that set by V, then you get:

$$V = Span\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

And since the span of anything is a vector space, V is a vector space, and hence a subspace of $M_{2\times 2}$.

Alternatively you could have shown in the usual way that the *O* matrix is in it, and that it is closed under addition and scalar multiplication.

(d) **TRUE** The matrix of the linear transformation T which reflects points about the *x*-axis and then about the *y*-axis is the same as the matrix of the linear transformation S which rotates points about the origin by 180 degrees counterclockwise.

Calculate $T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ Hence the matrix of T is $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Calculate $S \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $S \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ Hence the matrix of S is $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. And notice the two matrices are the same! 2. (e) **TRUE** The following set is a basis for P_2 : $\{1, 1 + t, 1 + t + t^2\}$.

> Linear independence: Suppose $a(1)+b(1+t)+c(1+t+t^2) = 0$, then $(a+b+c)+(b+c)t+ct^2 = 0$, hence c = 0, hence b = 0, hence a = 0, hence a = b = c = 0, and the polynomials are

linearly independent.

Span: Since P_2 is 3-dimensional, and the set contains 3 elements, hence the set also spans P_2

Therefore the set is a basis for P_2 .

- Note: There were many, many, many other ways to show why this is true! One way is to consider the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and notice its determinant is $1 \neq 0$, hence it is invertible, hence its columns are linearly independent and span \mathbb{R}^3 .
- (f) **FALSE** If V is a set that contains the 0-vector, and such that whenever u and v are in V, then u + v is in V, then V is a vector space!

Consider the set $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}, y \ge 0 \right\}$ in \mathbb{R}^2 . (i.e. the upper-half-plane)

<u>**0**-vector</u>: $\begin{bmatrix} 0\\0 \end{bmatrix}$ is in it! <u>**C**losed under addition</u>: Suppose $\mathbf{u} = \begin{bmatrix} x\\y \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} x'\\y' \end{bmatrix}$ are in *V*, then $y \ge 0$ and $y' \ge 0$. Then $\mathbf{u} + \mathbf{v} = \begin{bmatrix} x+x'\\y+y' \end{bmatrix}$. But since $y + y' \ge 0$, we get $\mathbf{u} + \mathbf{v}$ is in *V*

<u>Not closed under scalar multiplication</u>: For example, $\mathbf{u} = \begin{bmatrix} 1\\1 \end{bmatrix}$ is in V, but $(-2)\mathbf{u} = \begin{bmatrix} -2\\-2 \end{bmatrix}$ is not in V.

3. (a) If A and B are square matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.

FALSE

For example, take A = [2] and B = [3]. Then the statement says: Is $\frac{1}{2+3} = \frac{1}{2} + \frac{1}{3}$? Which is not true.

Other explanation: Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, then A + B is the zero matrix, whose inverse is not defined, while the right-hand-side gives you 0.

(b) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one linear transformation, then T is also onto.

TRUE

Let A be the matrix of T. Then, if T is one-to-one, then A is invertible (by one of the conditions of invertibility), and hence, by another condition of invertibility, this implies that T is onto. Note that is works precisely because m = n, the result doesn't hold in general!

(c) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^n , then $\{v_1, v_2\}$ is linearly independent as well!

TRUE

Suppose $a\mathbf{v_1} + b\mathbf{v_2} = \mathbf{0}$.

Goal: We want to show a = b = 0.

Now here's a clever trick: Add $0v_3 = 0$ to both sides of the equation.

Then we get: $av_1 + bv_2 + 0v_3 = 0$

In particular, if we let c = 0, then we get: $a\mathbf{v_1} + b\mathbf{v_2} + c\mathbf{v_3} = \mathbf{0}$

But $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are linearly independent, so a = b = c = 0.

In particular a = b = 0, which we wanted to show!

PEYAM RYAN TABRIZIAN

Note: I have to admit, this is a tricky proof! But it illustrates why it's important to write down what you want to show and what you know!

(d) If A is an invertible square matrix, then $(A^T)^{-1} = (A^{-1})^T$

TRUE

Let $B = (A^{-1})^T$. All we need to show is that $A^T B = BA^T = I$, because then $B = (A^T)^{-1}$, which is what we want to show.

But:

$$A^{T}B = A^{T} (A^{-1})^{T} = (A^{-1}A)^{T} = I^{T} = I$$

Where in the first step, we used the property of transposes $(CD)^T = D^T C^T$. Similarly:

$$BA^{T} = (A^{-1})^{T} A^{T} = (AA^{-1})^{T} = I^{T} = I$$

Hence $A^T B = B A^T = I$, which is what we needed to show!

(e) If A is a 3×3 matrix with two pivot positions, then the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

TRUE

If A has two pivot positions, then it has a row of zeros, and hence, because A is a 3×3 matrix, the solution $A\mathbf{x} = \mathbf{0}$ has at least one free variable, hence the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution!

(f) If A and B are square matrices, then det(A + B) = det(A) + det(B).

FALSE

For example, take $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Then det(A) = 1, det(B) = 1, but det(A + B) = det(O) = 0 (where O is the zero-matrix).

(g) If $Nul(A) = \{0\}$, then A is invertible.

FALSE

Don't worry, this got me too! This statement *is* true if A is **SQUARE**! But if A is not square, this statement is never true!

For example, let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $Nul(A) = \{\mathbf{0}\}$, but A is not invertible, because it is not square.

(h) \mathbb{R}^2 is a subspace of \mathbb{R}^3

FALSE!

 \mathbb{R}^2 is not even a *subset* of \mathbb{R}^3 !!! Don't confuse this with $\left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \mid x, y \in \mathbb{R} \right\}$, which *is* a subspace of \mathbb{R}^3 and very similar to \mathbb{R}^2 (but not exactly the same)

 (i) If W is a subspace of V and B is a basis for V, then some subset of B is a basis for W.

FALSE

This is also very tricky (this got me too :)), because the 'opposite' statement does hold, namely if \mathcal{B} is a basis for W, you can always complete \mathcal{B} to become a basis of V (this is the 'basis extension theorem').

As a counterexample, take
$$V = \mathbb{R}^3$$
, $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$,
and $W = Span \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ (a line in \mathbb{R}^3).

If the statement was true, then one of the vectors in \mathcal{B} would be a basis for W, but this is bogus.

- 4. (a) **FALSE**
 - (b) FALSE
 - (c) **TRUE**
 - (d) TRUE
 - (e) TRUE
 - (f) **FALSE** (Take $V = \mathbb{R}^2$ with the standard basis, and $W = Span\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. You cannot delete vectors from the standard basis to form a basis for W)
 - (g) **TRUE**
 - (h) FALSE
 - (i) **TRUE**
 - (j) FALSE