MATH 54 – TRUE/FALSE QUESTIONS FOR MIDTERM 2 – SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) [TRUE] If \(A \) is diagonalizable, then \(A^3 \) is diagonalizable.

\[A = PDP^{-1}, \ \text{so} \ \ A^3 = P D^3 P = \widetilde{P} \widetilde{D} \widetilde{P}^{-1}, \ \text{where} \ \widetilde{P} = P \ \text{and} \ \widetilde{D} = D^3, \ \text{which is diagonal} \]

(b) [TRUE] If \(A \) is a \(3 \times 3 \) matrix with 3 (linearly independent) eigenvectors, then \(A \) is diagonalizable

(This is one of the facts we talked about in lecture, the point is that to figure out if \(A \) is diagonalizable, look at the eigenvectors)

(c) [TRUE] If \(A \) is a \(3 \times 3 \) matrix with eigenvalues \(\lambda = 1, 2, 3 \), then \(A \) is invertible

(No eigenvalue which is 0, so by the IMT, \(A \) is invertible)

(d) [TRUE] If \(A \) is a \(3 \times 3 \) matrix with eigenvalues \(\lambda = 1, 2, 3 \), then \(A \) is (always) diagonalizable

(this is the useful test we’ve been talking about in lecture, \(A \) is diagonalizable since it has 3 distinct eigenvalues)

(e) [FALSE] If \(A \) is a \(3 \times 3 \) matrix with eigenvalues \(\lambda = 1, 2, 2 \), then \(A \) is (always) not diagonalizable

(Take \(A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \), it is diagonal, hence diagonalizable)

Date: Monday, April 13th, 2015.
(f) **FALSE** If \tilde{x} is the orthogonal projection of x on W, then \tilde{x} is orthogonal to x.

(Draw a picture)

(g) **FALSE** If \hat{u} is the orthogonal projection of u on $Span \{v\}$, then:

$$\hat{u} = \left(\frac{u \cdot v}{v \cdot v} \right) u$$

(It’s $\hat{u} = \left(\frac{u \cdot v}{v \cdot v} \right) v$, it has to be a multiple of v)

(h) **TRUE** If Q is an orthogonal matrix, then Q is invertible.

(Remember that in this course, orthogonal matrices are square)

2. (a) **FALSE** If A is diagonalizable, then it is invertible.

For example, take $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. It is diagonalizable because it is diagonal, but it is not invertible!

(b) **FALSE** If A is invertible, then A is diagonalizable

Take $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (this is the ‘magic counterexample’ we talked about in lecture). It is invertible because $det(A) = 1 \neq 0$. To show it is not diagonalizable, let’s find the eigenvalues and eigenvectors of A:

Eigenvalues:

$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 = 0$$

Which gives us $\lambda = 1$.

Eigenvectors:

$$Nul(I - A) = Nul \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$$
Which gives \(-y = 0\), so \(y = 0\), hence:

\[
Nul(I - A) = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}
\]

Since there is only one (linearly independent) eigenvector, \(A\) is not diagonalizable!

3.
1. (30 points, 5 pts each)

Label the following statements as T or F.

Make sure to JUSTIFY YOUR ANSWERS!!! You may use any facts from the book or from lecture.

(a) If \(A = \{a_1, a_2, a_3\}\) and \(D = \{d_1, d_2, d_3\}\) are bases for \(V\), and \(P\) is the matrix whose \(i\)th column is \([d_i]_A\), then for all \(x \in V\), we have \([x]_D = P[x]_A\)

\[\text{FALSE}\]

First of all, \(P = \begin{bmatrix} [d_1]_A & [d_2]_A & [d_3]_A \end{bmatrix} = A \leftarrow D\)

(remember, you always evaluate with respect to the new, cool basis, here it is \(A\)), so we should have:

\([x]_A = A \leftarrow D [x]_D = P[x]_D\)

And not the opposite!

(b) A 3 \times 3 matrix \(A\) with only one eigenvalue cannot be diagonalizable

\[\text{SUPER FALSE!!!!!!!!}\]
Remember that to check if a matrix is not diagonalizable, you really have to look at the eigenvectors!

For example, \(A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) has only eigenvalue 2, but is diagonalizable (it’s diagonal!). Or you can choose \(A \) to be the \(O \) matrix, or the identity matrix, this also works!

(c) If \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are 2 eigenvectors of \(A \) corresponding to 2 different eigenvalues \(\lambda_1 \) and \(\lambda_2 \), then \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are linearly independent!

TRUE (finally!)

Note: The proof is a bit complicated, but I’ve seen this on a past exam! I think at that point, the professor wanted to get revenge on his students for not coming to lecture!

Remember that eigenvectors have to be nonzero!

Now, assume \(a\mathbf{v}_1 + b\mathbf{v}_2 = 0 \).

Then apply \(A \) to this to get:

\[A(a\mathbf{v}_1 + b\mathbf{v}_2) = A(0) = 0 \]

That is:

\[aA(\mathbf{v}_1) + bA(\mathbf{v}_2) = 0 \]

\[a\lambda_1\mathbf{v}_1 + b\lambda_2\mathbf{v}_2 = 0 \]

However, we can also multiply the original equation by \(\lambda_1 \) to get:

\[a\lambda_1\mathbf{v}_1 + b\lambda_1\mathbf{v}_2 = 0 \]

Subtracting this equation from the one preceding it, we get:

\[b(\lambda_1 - \lambda_2)\mathbf{v}_2 = 0 \]

So
\[b(\lambda_1 - \lambda_2) = 0 \]

But \(\lambda_1 \neq \lambda_2 \), so \(\lambda_1 - \lambda_2 \neq 0 \), hence we get \(b = 0 \).

But going back to the first equation, we get:

\[\begin{align*}
 a v_1 &= 0 \\
 \text{So } a &= 0. \\
 \text{Hence } a = b &= 0, \text{ and we’re done!}
\end{align*} \]

(d) If a matrix \(A \) has orthogonal columns, then it is an orthogonal matrix.

\textbf{FALSE}

Remember that an \textbf{orthogonal} matrix has to have \textbf{orthonormal} columns!

(e) For every subspace \(W \) and every vector \(y \), \(y - \text{Proj}_W y \) is orthogonal to \(\text{Proj}_W y \) (proof by picture is ok here)

\textbf{TRUE}

Draw a picture! \(\text{Proj}_W y \) is just another name for \(\hat{y} \).

(f) If \(y \) is already in \(W \), then \(\text{Proj}_W y = y \)

\textbf{TRUE}

Again, draw a picture!

If you want a more mathematical proof, here it is:

Let \(B = \{ w_1, \cdots w_p \} \) be an orthogonal basis for \(W \) (\(p = \text{Dim}(W) \)).
Then \(y = \left(\frac{y \cdot w_1}{w_1 \cdot w_1} \right) w_1 + \cdots + \left(\frac{y \cdot w_p}{w_p \cdot w_p} \right) w_p. \)

But then, by definition of \(\text{Proj}_W y = \hat{y}, \) we get:

\[
\hat{y} = \left(\frac{y \cdot w_1}{w_1 \cdot w_1} \right) w_1 + \cdots + \left(\frac{y \cdot w_p}{w_p \cdot w_p} \right) w_p = y
\]

So \(\hat{y} = y \) in this case.

4. (a) If \(A \) is a \(3 \times 3 \) matrix with eigenvalues \(\lambda = 0, 2, 3 \), then \(A \) must be diagonalizable!

TRUE (an \(n \times n \) matrix with 3 distinct eigenvalues is diagonalizable)

(b) There does not exist a \(3 \times 3 \) matrix \(A \) with eigenvalues \(\lambda = 1, -1, -1 + i \).

TRUE (here we assume \(A \) has real entries; eigenvalues always come in complex conjugate pairs, i.e. if \(A \) has eigenvalue \(-1 + i \), it must also have eigenvalue \(-1 - i \))

(c) If \(A \) is a symmetric matrix, then all its eigenvectors are orthogonal.

FALSE: Take \(A \) to be your favorite symmetric matrix, and, for example, take \(v \) to be one eigenvector, and \(w \) to be the *same* eigenvector (or a different eigenvector corresponding to
the same eigenvalue). That’s why we had to apply the Gram Schmidt process to each eigenspace in the previous problem!

(d) If Q is an orthogonal $n \times n$ matrix, then $Row(Q) = Col(Q)$.

TRUE: (since Q is orthogonal, $Q^T Q = I$, so Q is invertible, hence $Row(Q) = Col(Q) = \mathbb{R}^n$)

(e) The equation $Ax = b$, where A is a $n \times n$ matrix always has a unique least-squares solution.

FALSE: Take A to be the zero matrix, and b to be the zero vector! This statement is true if A has rank n.

(f) If $AB = I$, then $BA = I$.

FALSE: Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then $AB = I$, but $BA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

(g) If A is a square matrix, then $Rank(A) = Rank(A^2)$

FALSE: Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $Rank(A) = 1$, but $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so $Rank(A^2) = 0$.
(h) If W is a subspace, and Py is the orthogonal projection of y onto W, then $P^2y = Py$

TRUE (draw a picture! If you orthogonally project $Py = \hat{y}$ on W, you get \hat{y})

(i) If $T : V \to W$, where $\text{dim}(V) = 3$ and $\text{dim}(W) = 2$, then T cannot be one-to-one.

TRUE (by Rank-Nullity theorem, $\text{dim}(\text{Nul}(T)) + \text{Rank}(T) = 3$. But $\text{Rank}(T)$ can only be at most $\text{dim}(W) = 2$, so $\text{dim}(\text{Nul}(T)) > 0$, so $\text{Nul}(T) \neq \{0\}$)

(j) If A is similar to B, then $\det(A) = \det(B)$.

TRUE (If $A = PBP^{-1}$, then $\det(A) = \det(B)$)