MATH 54 - TRUE/FALSE QUESTIONS FOR MIDTERM 2 SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (a) TRUE If A is diagonalizable, then A^{3} is diagonalizable.
$\left(A=P D P^{-1}\right.$, so $A^{3}=P D^{3} P=\widetilde{P} \widetilde{D} \widetilde{P}^{-1}$, where $\widetilde{P}=P$ and $\widetilde{D}=D^{3}$, which is diagonal)
(b) TRUE If A is a 3×3 matrix with 3 (linearly independent) eigenvectors, then A is diagonalizable
(This is one of the facts we talked about in lecture, the point is that to figure out if A is diagonalizable, look at the eigenvectors)
(c) TRUE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is invertible
(No eigenvalue which is 0 , so by the IMT, A is invertible)
(d) TRUE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is (always) diagonalizable
(this is the useful test we've been talking about in lecture, A is diagonalizable since it has 3 distinct eigenvalues)
(e) FALSE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,2$, then A is (always) not diagonalizable
(Take $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, it is diagonal, hence diagonalizable)
(f) FALSE If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on W, then $\hat{\mathbf{x}}$ is orthogonal to x .
(Draw a picture)
(g) FALSE If $\hat{\mathbf{u}}$ is the orthogonal projection of \mathbf{u} on $\operatorname{Span}\{\mathbf{v}\}$, then:

$$
\hat{\mathbf{u}}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{u}
$$

(It's $\hat{\mathbf{u}}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$, it has to be a multiple of \mathbf{v})
(h) TRUE If Q is an orthogonal matrix, then Q is invertible.
(Remember that in this course, orthogonal matrices are square)
2. (a) FALSE If A is diagonalizable, then it is invertible.

For example, take $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. It is diagonalizable because it is diagonal, but it is not invertible!
(b) FALSE If A is invertible, then A is diagonalizable

Take $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ (this is the 'magic counterexample' we talked about in lecture). It is invertible because $\operatorname{det}(A)=1 \neq 0$. To show it is not diagonalizable, let's find the eigenvalues and eigenvectors of A :

Eigenvalues:

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-1 & -1 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0
$$

Which gives us $\lambda=1$.

Eigenvectors:

$$
N u l(I-A)=N u l\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]
$$

Which gives $-y=0$, so $y=0$, hence:

$$
\operatorname{Nul}(I-A)=\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

Since there is only one (linearly independent) eigenvector, A is not diagonalizable!
3.

1. (30 points, 5 pts each)

Label the following statements as \mathbf{T} or \mathbf{F}.
Make sure to JUSTIFY YOUR ANSWERS!!! You may use any facts from the book or from lecture.
(a) If $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \mathbf{d}_{\mathbf{3}}\right\}$ are bases for V, and P is the matrix whose i th column is $\left[\mathbf{d}_{\mathbf{i}}\right]_{\mathcal{A}}$, then for all \mathbf{x} in V, we have $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$

FALSE

First of all, $P=\left[\begin{array}{lll}{\left[\mathbf{d}_{\mathbf{1}}\right]_{\mathcal{A}}} & {\left[\mathbf{d}_{\mathbf{2}}\right]_{\mathcal{A}}} & {\left[\mathbf{d}_{\mathbf{3}}\right]_{\mathcal{A}}}\end{array}\right]=\mathcal{A} \stackrel{P}{\leftarrow} \mathcal{D}$ (remember, you always evaluate with respect to the new, cool basis, here it is \mathcal{A}), so we should have:

$$
[\mathbf{x}]_{\mathcal{A}}=\mathcal{A} \stackrel{P}{\leftarrow} \mathcal{D}[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{D}}
$$

And not the opposite!
(b) A 3×3 matrix A with only one eigenvalue cannot be diagonalizable

SUPER FALSE!!!!!!!!!!

Remember that to check if a matrix is not diagonalizable, you really have to look at the eigenvectors!

For example, $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ has only eigenvalue 2 , but is diagonalizable (it's diagonal!). Or you can choose A to be the O matrix, or the identity matrix, this also works!
(c) If $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are 2 eigenvectors of A corresponding to 2 different eigenvalues λ_{1} and λ_{2}, then $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent!

TRUE (finally!)
Note: The proof is a bit complicated, but I've seen this on a past exam! I think at that point, the professor wanted to get revenge on his students for not coming to lecture!

Remember that eigenvectors have to be nonzero!
Now, assume $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=\mathbf{0}$.
Then apply A to this to get:

$$
A\left(a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}\right)=A(\mathbf{0})=\mathbf{0}
$$

That is:

$$
\begin{gathered}
a A\left(\mathbf{v}_{\mathbf{1}}\right)+b A\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{0} \\
a \lambda_{1} \mathbf{v}_{\mathbf{1}}+b \lambda_{2} \mathbf{v}_{\mathbf{2}}=\mathbf{0}
\end{gathered}
$$

However, we can also multiply the original equation by λ_{1} to get:

$$
a \lambda_{1} \mathbf{v}_{\mathbf{1}}+b \lambda_{1} \mathbf{v}_{\mathbf{2}}=\mathbf{0}
$$

Subtracting this equation from the one preceding it, we get:

$$
b\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{\mathbf{2}}=\mathbf{0}
$$

$$
b\left(\lambda_{1}-\lambda_{2}\right)=\mathbf{0}
$$

But $\lambda_{1} \neq \lambda_{2}$, so $\lambda_{1}-\lambda_{2} \neq 0$, hence we get $b=0$.
But going back to the first equation, we get:

$$
a \mathbf{v}_{\mathbf{1}}=\mathbf{0}
$$

So $a=0$.

Hence $a=b=0$, and we're done!
(d) If a matrix A has orthogonal columns, then it is an orthogonal matrix.

FALSE

Remember that an orthogonal matrix has to have orthonormal columns!
(e) For every subspace W and every vector $\mathbf{y}, \mathbf{y}-\operatorname{Proj}_{W} \mathbf{y}$ is orthogonal to $\operatorname{Proj}_{W} \mathbf{y}$ (proof by picture is ok here)
TRUE
Draw a picture! $\operatorname{Proj}_{W} \mathbf{y}$ is just another name for \hat{y}.
(f) If \mathbf{y} is already in W, then $\operatorname{Proj}_{W} \mathbf{y}=\mathbf{y}$

TRUE

Again, draw a picture!
If you want a more mathematical proof, here it is:
Let $\mathcal{B}=\left\{\mathbf{w}_{\mathbf{1}}, \cdots \mathbf{w}_{\mathbf{p}}\right\}$ be an orthogonal basis for $W(p=$ $\operatorname{Dim}(W)$).

Then $y=\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{\mathbf{1}}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{p}}}{\mathbf{w}_{\mathbf{p}} \cdot \mathbf{w}_{\mathbf{p}}}\right) \mathbf{w}_{\mathbf{p}}$.
But then, by definition of $\operatorname{Proj}_{W} \mathbf{y}=\hat{\mathbf{y}}$, we get:
$\hat{y}=\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}}\right) \mathbf{w}_{\mathbf{1}}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{p}}}{\mathbf{w}_{\mathbf{p}} \cdot \mathbf{w}_{\mathbf{p}}}\right) \mathbf{w}_{\mathbf{p}}=y$
So $\hat{\mathbf{y}}=\mathbf{y}$ in this case.
4. (a) If A is a 3×3 matrix with eigenvalues $\lambda=0,2,3$, then A must be diagonalizable!

TRUE (an $n \times n$ matrix with 3 distinct eigenvalues is diagonalizable)
(b) There does not exist a 3×3 matrix A with eigenvalues $\lambda=$ $1,-1,-1+i$.

TRUE (here we assume A has real entries; eigenvalues always come in complex conjugate pairs, i.e. if A has eigenvalue $-1+$ i, it must also have eigenvalue $-1-i$)
(c) If A is a symmetric matrix, then all its eigenvectors are orthogonal.

FALSE: Take A to be your favorite symmetric matrix, and, for example, take \mathbf{v} to be one eigenvector, and w to be the same eigenvector (or a different eigenvector corresponding to
the same eigenvalue). That's why we had to apply the Gram Schmidt process to each eigenspace in the previous problem!
(d) If Q is an orthogonal $n \times n$ matrix, then $\operatorname{Row}(Q)=\operatorname{Col}(Q)$.

TRUE: (since Q is orthogonal, $Q^{T} Q=I$, so Q is invertible, hence $\left.\operatorname{Row}(Q)=\operatorname{Col}(Q)=\mathbb{R}^{n}\right)$
(e) The equation $A \mathbf{x}=\mathbf{b}$, where A is a $n \times n$ matrix always has a unique least-squares solution.

FALSE: Take A to be the zero matrix, and \mathbf{b} to be the zero vector! This statement is true if A has rank n.
(f) If $A B=I$, then $B A=I$.

FALSE: Let $A=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then $A B=I$, but $B A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$!
(g) If A is a square matrix, then $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{2}\right)$

FALSE: Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $\operatorname{Rank}(A)=1$, but $A^{2}=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, so $\operatorname{Rank}\left(A^{2}\right)=0$.
(h) If W is a subspace, and $P \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto W, then $P^{2} \mathbf{y}=P \mathbf{y}$

TRUE (draw a picture! If you orthogonally project $P \mathbf{y}=\hat{\mathbf{y}}$ on W, you get $\hat{\mathbf{y}}$)
(i) If $T: V \rightarrow W$, where $\operatorname{dim}(V)=3$ and $\operatorname{dim}(W)=2$, then T cannot be one-to-one.

TRUE (by Rank-Nullity theorem, $\operatorname{dim}(\operatorname{Nul}(T))+\operatorname{Rank}(T)=$ 3. But $\operatorname{Rank}(T)$ can only be at most $\operatorname{dim}(W)=2$, so $\operatorname{dim}(\operatorname{Nul}(T))>$ 0 , so $\operatorname{Nul}(T) \neq\{\mathbf{0}\})$
(j) If A is similar to B, then $\operatorname{det}(A)=\operatorname{det}(B)$.

TRUE (If $A=P B P^{-1}$, then $\left.\operatorname{det}(A)=\operatorname{det}(B)\right)$

