MATH 54 – TRUE/FALSE QUESTIONS FOR MIDTERM 2

PEYAM RYAN TABRIZIAN

- 1. (a) If A is diagonalizable, then A^3 is diagonalizable.
 - (b) If A is a 3×3 matrix with 3 (linearly independent) eigenvectors, then A is diagonalizable
 - (c) If A is a 3×3 matrix with eigenvalues $\lambda = 1, 2, 3$, then A is invertible
 - (d) If A is a 3×3 matrix with eigenvalues $\lambda = 1, 2, 3$, then A is (always) diagonalizable
 - (e) If A is a 3×3 matrix with eigenvalues $\lambda = 1, 2, 2$, then A is (always) not diagonalizable
 - (f) If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on W, then $\hat{\mathbf{x}}$ is orthogonal to \mathbf{x} .
 - (g) If $\hat{\mathbf{u}}$ is the orthogonal projection of \mathbf{u} on $Span \{\mathbf{v}\}$, then:

$$\hat{\mathbf{u}} = \left(rac{\mathbf{u}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}
ight)\mathbf{u}$$

- (h) If Q is an orthogonal matrix, then Q is invertible.
- 2. (a) If A is diagonalizable, then A is invertible.
 - (b) If A is invertible, then A is diagonalizable

Date: Monday, April 13th, 2015.

- 3. (a) If $\mathcal{A} = \{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}\}$ and $\mathcal{D} = \{\mathbf{d_1}, \mathbf{d_2}, \mathbf{d_3}\}$ are bases for *V*, and *P* is the matrix whose *i*th column is $[\mathbf{d_i}]_{\mathcal{A}}$, then for all \mathbf{x} in *V*, we have $[\mathbf{x}]_{\mathcal{D}} = P[\mathbf{x}]_{\mathcal{A}}$
 - (b) A 3×3 matrix A with only one eigenvalue cannot be diagonalizable
 - (c) If v_1 and v_2 are 2 eigenvectors corresponding to 2 different eigenvalues λ_1 and λ_2 , then v_1 and v_2 are linearly independent!
 - (d) If a matrix A has orthogonal columns, then it is an orthogonal matrix.
 - (e) For every subspace W and every vector $\mathbf{y}, \mathbf{y} Proj_W \mathbf{y}$ is orthogonal to $Proj_W \mathbf{y}$ (proof by picture is ok here)
 - (f) If y is already in W, then $Proj_W y = y$
- 4. (a) If A is a 3×3 matrix with eigenvalues $\lambda = 0, 2, 3$, then A must be diagonalizable!
 - (b) There does not exist a 3×3 matrix A with eigenvalues $\lambda = 1, -1, -1 + i$. (ignore this)
 - (c) If A is a symmetric matrix, then all its eigenvectors are orthogonal.
 - (d) If Q is an orthogonal $n \times n$ matrix, then Row(Q) = Col(Q).
 - (e) The equation $A\mathbf{x} = \mathbf{b}$, where A is a $n \times n$ matrix always has a unique least-squares solution.
 - (f) If AB = I, then BA = I.
 - (g) If A is a square matrix, then $Rank(A) = Rank(A^2)$
 - (h) If W is a subspace, and Py is the orthogonal projection of y onto W, then $P^2y = Py$

2

- (i) If $T: V \to W$, where dim(V) = 3 and dim(W) = 2, then T cannot be one-to-one.
- (j) If A is similar to B, then det(A) = det(B).