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1. (10 points, 1 point each) Label each statement as TRUE or FALSE.
In this question, you do NOT have to justify your answer. Each cor-
rect answer will get 1 point and each incorrect or illegible answer
will get 0 points.

(a) If A is similar to I (the identity matrix), then A = I

(b) If A is invertible and λ is an eigenvalue of A, then 1
λ

must be
an eigenvalue of A−1

(c) For any matrix A, Col(A) is orthogonal to Nul(A)

(d) A 3× 3 matrix with eigenvalues λ = 0 and λ = 1 can never be
diagonalizable

(e) A 3× 3 matrix with eigenvalues λ = 0 and λ = 1 can never be
invertible

(f) IfA is a 2×3 matrix, then the linear transformation T (x) = Ax
is never one-to-one

(g) IfA is a 2×3 matrix, then the linear transformation T (x) = Ax
is never onto R2

(h) The least-squares solution x̂ of Ax = b is a vector in Rn that
satisfies ‖Ax− b‖ ≤ ‖Ax̂− b‖ for all x

(i) If u and v are eigenvectors of A corresponding λ = 1 and
λ = −1 respectively, then A2019(u− v) = u+ v

(j) For any square matrix A, det(3A) = 3 det(A)
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2. (10 points) Find a diagonal matrix D and an invertible matrix P
with A = PDP−1, where

A =

 4 −2 0
−1 3 0
0 0 2
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3. (10 = 5 + 5 points)
(a) Is the following matrix A diagonalizable? Why or why not?

(b) Find the B−matrix of A, where B =

{[
1
1

]
,

[
1
2

]}
A =

[
4 1
−1 6

]
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4. (10 points) Use the formula for inverses using determinants (section
3.3) to calculate A−1, where

A =

1 1 2
2 −2 −1
2 1 3
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5. (10 = 2 + 2 + 1 + 2 + 1 + 2 points) In this question, there will be
no partial credit for each sub-part.

For the following matrix A, find:

(a) The reduced row-echelon form (RREF) of A
(b) A basis for Nul(A)
(c) dim(Nul(A))
(d) A basis for Col(A)
(e) Rank(A)
(f) State the Rank Theorem

A =


2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1

 ∼ B =


2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0





MATH 3A − FINAL EXAM 7

6. (10 points) Use the Gram-Schmidt process to find the QR decom-
position of A, where

A =

1 1 0
1 0 1
0 1 1
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7. (10 points) Find the least-squares solution and the least-squares er-
ror of Ax = b. You may use any method taught in this course.

A =


2 1
2 0
0 1
2 0

 , b =


0
1
1
2
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8. (10 points, 5 points each) Label each statement as TRUE or FALSE.
In this question, you HAVE to justify your answer, meaning that if
the statement is true, you have to explain why it’s true, and if the
statement is false, you have to give an explicit counterexample and
show why it’s a counterexample.

(a) If A is similar to B and B is diagonalizable, then A is diago-
nalizable.

(b) For any vectors u and v in Rn, we have:

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2
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9. (10 points) Suppose A satisfies AT = A and let u and v be eigen-
vectors of A corresponding to λ and µ respectively, where λ 6= µ.
Show that u and v are orthogonal. Explain where you used the fact
that λ 6= µ.

Hint: Calculate (Au) · v in two different ways. You may want to
use that x · y = xTy.
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10. (10 points) The Grand Finale!!!

Welcome to the final Twilight battle between Team Edward (vam-
pires) and Team Jacob (werewolves). Assume that the number of
vampires vn and the number of werewolves wn after each round n
are related by the following system

vn+1 = 2vn −
1

2
wn

wn+1 = 3vn −
1

2
wn

Find all the initial values
[
v0
w0

]
such that we have

[
v∞
w∞

]
=

[
0
0

]
(which means in the long-run, both species die out).

Note: Unlike the Pokemon battle-example, assume that negative
values of vn and wn are allowed
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(Scratch paper)


