111 TRUE/FALSE QUESTIONS

Chapter 1: Systems of Linear Equations

(1) A system of 3 linear equations in 2 unknowns must have no solution
(2) A system of 2 linear equations in 3 unknowns could have exactly one solution
(3) A system of linear equations could have exactly two solutions
(4) If there's a pivot in every row of A, then $A \mathbf{x}=\mathbf{b}$ is consistent for every b
(5) If the augmented matrix has a pivot in the last column, then $A \mathbf{x}=\mathbf{b}$ is inconsistent
(6) If A has a row of zeros, then $A \mathbf{x}=\mathbf{b}$ is inconsistent for all \mathbf{b}
(7) $A \mathrm{x}=\mathbf{0}$ is always consistent
(8) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent then $\{A \mathbf{u}, A \mathbf{v}, A \mathbf{w}\}$ is also linearly dependent for every A
(9) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent and $\{\mathbf{v}, \mathbf{w}, \mathbf{p}\}$ is linearly independent, then so is $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{p}\}$
(10) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then \mathbf{u} is in the span of $\{\mathbf{v}, \mathbf{w}\}$
(11) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent and $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, then \mathbf{w} is in the span of $\{\mathbf{u}, \mathbf{v}\}$
(12) If T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3}, then the matrix A of T is a 2×3 matrix
(13) If $T(c \mathbf{u})=c T(\mathbf{u})$ for every real number c, then T is a linear transformation
(14) If $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v}, then T is a linear transformation
(15) If $T(\mathbf{u}+c \mathbf{v})=T(\mathbf{u})+c T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} and every real number c, then T is a linear transformation
(16) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is linear, then T cannot be onto \mathbb{R}^{3}
(17) If T is one-to-one and $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $\{T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{w})\}$ is also linearly independent

Chapter 2: Matrix Algebra

(18) $A B+B^{T} A^{T}$ is always symmetric
(19) Any matrix A can be written as a sum of a symmetric $\left(A^{T}=A\right)$ and antisymmetric $\left(A^{T}=-A\right)$ matrix
(20) $(A B)^{-1}=A^{-1} B^{-1}$
(21) If $A B=A C$, then $B=C$
(22) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$ is not invertible
(23) If $A B=I$ for some B, then A is invertible
(24) A 3×2 matrix could be invertible
(25) A 2×3 matrix could be invertible
(26) If $A B$ is invertible, then A and B are invertible
(27) Same, but this time A and B are square
(28) If $\operatorname{Nul}(A)=\{0\}$, then A is invertible
(29) Every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has a matrix
(30) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one, then T is onto \mathbb{R}^{n}
(31) The row-operations that transform A to I also transform I to A^{-1}
(32) If A is square and $A \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$, then A is row-equivalent to the identity matrix

Chapter 3: Determinants

(33) In general, $\operatorname{det}(2 A)=2 \operatorname{det}(A)$
(34) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
(35) If $\operatorname{det}\left(A^{2}\right)+2 \operatorname{det}(A)+\operatorname{det}(I)=0$, then A is invertible
(36) $\operatorname{det}\left(A^{-1}\right)=-\operatorname{det}(A)$
(37) If A^{100} is invertible, then A is invertible
(38) If $\operatorname{det}(A)=1$ and A has only integer entries, then A^{-1} has integer entries
(39) If $\operatorname{det}(A)=1$ and A and \mathbf{b} have only integer entries, then the solution x to $A \mathbf{x}=\mathbf{b}$ has only integer entries

Chapter 4: Vector Spaces and Subspaces

(40) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=0\right\}$ is a subspace of \mathbb{R}^{2}
(41) The union of two subspaces of V is still a subspace of V
(42) The intersection of two subspaces of V is still a subspace of V
(43) Given any basis \mathcal{B} of V, and a subspace W of V, then there is a subset of \mathcal{B} that is a basis of W
(44) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
(45) $N u l\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
(46) For a fixed $\mathbf{b} \neq 0$, the set of solutions to $A \mathbf{x}=\mathbf{b}$ is a subspace of \mathbb{R}^{n}
(47) If A is a 4×6 matrix with 2 pivot columns, then $\operatorname{Nul}(A)=\mathbb{R}^{4}$
(48) If A is $m \times n$ and has n pivot columns, then $\operatorname{Nul}(A)=\{0\}$
(49) If A is $m \times n$ and has n pivot columns, then $\operatorname{Col}(A)=\mathbb{R}^{m}$
(50) If A is row-equivalent to B, then $\operatorname{Col}(A)=\operatorname{Col}(B)$
(51) $\operatorname{Rank}\left(A^{2}\right)=\operatorname{Rank}(A)$
(52) The set W of polynomials of degree n is a subspace of the set V of polynomials (of any degree)
(53) If A is 5×9, then $\operatorname{Nul}(A)$ is at least 4 dimensional
(54) $\left\{\cos ^{2}(t), \sin ^{2}(t), \cos (2 t)\right\}$ is linearly dependent
(55) \mathbb{Z} is a subspace of \mathbb{R}
(56) If W is a subset of V such that $\mathbf{0}$ (the zero vector in V) is in W and W is closed under addition, then W is a subspace of V
(57) If 0 is in W and W is closed under scalar multiplication, then W is a subspace of V
(58) If W is closed under addition and scalar multiplication, then W is a subspace of V
(59) A vector space V is always a subspace of something
(60) If A s row-equivalent to B, then the pivot columns of B form a basis for $\operatorname{Col}(A)$
(61) Row-operations preserve the span of the columns of a matrix
(62) Row-operations preserve the linear independence relations of the columns of a matrix
(63) If \mathcal{B} spans a space V, then there is a subset of \mathcal{B} that is a basis for V
(64) If $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is a linearly independent subset of a n-dimensional vector space V, then \mathcal{B} is a basis for V
(65) If $\mathcal{B}=\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is a spanning subset of a n-dimensional vector space V, then \mathcal{B} is a basis for V
(66) $\operatorname{dim}\left(P_{4}\right)=4$
(67) If \mathcal{B} is a basis for \mathbb{R}^{n} and P is a matrix with the vectors of \mathcal{B} as its columns, then $P \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$ (the coordinates of \mathbf{x} with respect to \mathcal{B})
(68) If $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \cdots, \mathbf{b}_{\mathbf{n}}\right\}$ and \mathcal{C} are bases of \mathbb{R}^{n} and $P=\left[\begin{array}{lll}{\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{\mathbf{n}}\right]_{\mathcal{C}}}\end{array}\right]$, then $P[\mathbf{x}]_{\mathcal{C}}=[\mathbf{x}]_{\mathcal{B}}$
(69) If $\mathcal{B}=\left\{\mathbf{e}_{\mathbf{1}}, \cdots, \mathbf{e}_{\mathbf{n}}\right\}$ is the standard basis of \mathbb{R}^{n}, then $[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}$
(70) $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{T}\right)$

Chapter 5: Eigenvalues and Eigenvectors

(71) A 3×3 matrix with eigenvalues $\lambda=1,2,4$ must be diagonalizable
(72) A 3×3 matrix with eigenvalues $\lambda=1,1,2$ is never diagonalizable
(73) Every matrix is diagonalizable
(74) If A is similar to B, then $\operatorname{det}(A)=\operatorname{det}(B)$
(75) If A is similar to B, then A and B have the same eigenvalues
(76) If A is diagonalizable, then $\operatorname{det}(A)$ is the product of the eigenvalues of A
(77) If A is similar to B, then A and B have the same eigenvectors
(78) If A is invertible, then A is diagonalizable
(79) If A is diagonalizable, then A is invertible
(80) If A is similar to B, then A^{2} is similar to B^{2}
(81) If A is diagonalizable and invertible, then A^{-1} is diagonalizable
(82) If $\lambda=0$ is an eigenvalue of A, then A is not invertible
(83) (Nonzero) Eigenvectors corresponding to different eigenvalues of A are linearly independent
(84) Every matrix has a real eigenvalue
(85) Every matrix has a complex eigenvalue
(86) If the characteristic polymomial of A is $\lambda^{2}-3 \lambda+2=0$, then $A^{2}-3 A+2 I=O$ (the zero-matrix)

Chapter 6: Orthogonality and Least-Squares

(87) If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on a subspace W, then $\hat{\mathbf{x}}$ is perpendicular to \mathbf{x}
(88) $\hat{\hat{\mathrm{x}}}=\hat{\mathrm{x}}$
(89) The orthogonal projection of \mathbf{x} on W^{\perp} is $\mathbf{x}-\hat{\mathbf{x}}$
(90) Every (nonzero) subspace W has an orthonormal basis
(91) $W \cap W^{\perp}=\{0\}$
(92) $A A^{T} \mathbf{x}$ is the projection of \mathbf{x} on $\operatorname{Col}(A)$
(93) Same, but the columns of A are orthonormal
(94) $\operatorname{Rank}\left(A^{T} A\right)=\operatorname{Rank}(A)$
(95) If Q is an orthogonal matrix, then Q is invertible
(96) If Q is a matrix with orthonormal columns, then $\|Q \mathbf{x}\|=\|\mathbf{x}\|$
(97) An orthogonal set without the zero-vector is linearly independent
(98) The orthogonal projection of \mathbf{v} on $W=\operatorname{Span}\{\mathbf{u}\}$ is $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$
(99) An orthogonal matrix has orthogonal columns
(100) If $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$, then $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on $\operatorname{Col}(A)$.
(101) If $\hat{\mathbf{x}}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$, then $A \hat{\mathbf{x}}$ is the point on $\operatorname{Col}(A)$ that is closest to \mathbf{b}
(102) $A \mathrm{x}=\mathrm{b}$ has only one least-squares solution
(103) If $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then \mathbf{u} is orthogonal to \mathbf{v} (assume that everything is real)
(104) $\int_{0}^{1} f(x) g(x) d x \leq\left(\int_{0}^{1}(f(x))^{2} d x\right)^{\frac{1}{2}}\left(\int_{0}^{1}(g(x))^{2} d x\right)^{\frac{1}{2}}$
(105) The product of two orthogonal matrices (it it's defined) is orthogonal
(106) $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Nul}\left(A^{T}\right)$

Chapter 7: Symmetric Matrices

(107) If A is symmetric, then eigenvectors corresponding to different eigenvalues of A are orthogonal
(108) A symmetric matrix has only real eigenvalues
(109) Linearly independent eigenvectors of a symmetric matrix are orthogonal
(110) If A is symmetric, then it is orthogonally diagonalizable
(111) If A is orthogonally diagonalizable, then it is symmetric

