111 TRUE/FALSE QUESTIONS

Chapter 1: Systems of Linear Equations

- (1) A system of 3 linear equations in 2 unknowns must have no solution
- (2) A system of 2 linear equations in 3 unknowns could have exactly one solution
- (3) A system of linear equations could have exactly two solutions
- (4) If there's a pivot in every row of A, then $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b}
- (5) If the augmented matrix has a pivot in the last column, then $A\mathbf{x} = \mathbf{b}$ is inconsistent
- (6) If A has a row of zeros, then $A\mathbf{x} = \mathbf{b}$ is inconsistent for all \mathbf{b}
- (7) $A\mathbf{x} = \mathbf{0}$ is always consistent
- (8) If $\{u, v, w\}$ is linearly dependent then $\{Au, Av, Aw\}$ is also linearly dependent for every A
- (9) If $\{u, v, w\}$ is linearly independent and $\{v, w, p\}$ is linearly independent, then so is $\{u, v, w, p\}$
- (10) If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, then \mathbf{u} is in the span of $\{\mathbf{v}, \mathbf{w}\}$
- (11) If $\{u, v, w\}$ is linearly dependent and $\{u, v\}$ is linearly independent, then w is in the span of $\{u, v\}$
- (12) If T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 , then the matrix A of T is a 2×3 matrix

Date: Thursday, March 14, 2019.

- (13) If $T(c\mathbf{u}) = cT(\mathbf{u})$ for every real number c, then T is a linear transformation
- (14) If $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} , then T is a linear transformation
- (15) If $T(\mathbf{u}+c\mathbf{v}) = T(\mathbf{u}) + cT(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} and every real number c, then T is a linear transformation
- (16) If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is linear, then T cannot be onto \mathbb{R}^3
- (17) If T is one-to-one and $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $\{T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{w})\}$ is also linearly independent

Chapter 2: Matrix Algebra

- (18) $AB + B^T A^T$ is always symmetric
- (19) Any matrix A can be written as a sum of a symmetric $(A^T = A)$ and antisymmetric $(A^T = -A)$ matrix

$$(20) \ (AB)^{-1} = A^{-1}B^{-1}$$

(21) If
$$AB = AC$$
, then $B = C$

(22)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$
 is not invertible

- (23) If AB = I for some B, then A is invertible
- (24) A 3×2 matrix could be invertible
- (25) A 2×3 matrix could be invertible
- (26) If AB is invertible, then A and B are invertible
- (27) Same, but this time A and B are square
- (28) If $Nul(A) = \{0\}$, then A is invertible

2

111 TRUE/FALSE QUESTIONS

- (29) Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has a matrix
- (30) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, then T is onto \mathbb{R}^n
- (31) The row-operations that transform A to I also transform I to A^{-1}
- (32) If A is square and $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$, then A is row-equivalent to the identity matrix

Chapter 3: Determinants

- (33) In general, det(2A) = 2 det(A)
- $(34) \det(A+B) = \det(A) + \det(B)$
- (35) If $det(A^2) + 2 det(A) + det(I) = 0$, then A is invertible
- (36) $\det(A^{-1}) = -\det(A)$
- (37) If A^{100} is invertible, then A is invertible
- (38) If det(A) = 1 and A has only integer entries, then A^{-1} has integer entries
- (39) If det(A) = 1 and A and b have only integer entries, then the solution x to Ax = b has only integer entries

Chapter 4: Vector Spaces and Subspaces

- (40) $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0\}$ is a subspace of \mathbb{R}^2
- (41) The union of two subspaces of V is still a subspace of V
- (42) The intersection of two subspaces of V is still a subspace of V
- (43) Given any basis \mathcal{B} of V, and a subspace W of V, then there is a subset of \mathcal{B} that is a basis of W
- (44) \mathbb{R}^2 is a subspace of \mathbb{R}^3

(45) $Nul \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = Span \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

(46) For a fixed $\mathbf{b} \neq \mathbf{0}$, the set of solutions to $A\mathbf{x} = \mathbf{b}$ is a subspace of \mathbb{R}^n

- (47) If A is a 4×6 matrix with 2 pivot columns, then $Nul(A) = \mathbb{R}^4$
- (48) If A is $m \times n$ and has n pivot columns, then $Nul(A) = \{0\}$
- (49) If A is $m \times n$ and has n pivot columns, then $Col(A) = \mathbb{R}^m$
- (50) If A is row-equivalent to B, then Col(A) = Col(B)
- (51) $Rank(A^2) = Rank(A)$
- (52) The set W of polynomials of degree n is a subspace of the set V of polynomials (of any degree)
- (53) If A is 5×9 , then Nul(A) is at least 4 dimensional
- (54) $\{\cos^2(t), \sin^2(t), \cos(2t)\}$ is linearly dependent
- (55) \mathbb{Z} is a subspace of \mathbb{R}
- (56) If W is a subset of V such that 0 (the zero vector in V) is in W and W is closed under addition, then W is a subspace of V
- (57) If **0** is in W and W is closed under scalar multiplication, then W is a subspace of V
- (58) If W is closed under addition and scalar multiplication, then W is a subspace of V
- (59) A vector space V is always a subspace of something
- (60) If A s row-equivalent to B, then the pivot columns of B form a basis for Col(A)
- (61) Row-operations preserve the span of the columns of a matrix

- (62) Row-operations preserve the linear independence relations of the columns of a matrix
- (63) If \mathcal{B} spans a space V, then there is a subset of \mathcal{B} that is a basis for V
- (64) If $\mathcal{B} = {\mathbf{v_1}, \cdots, \mathbf{v_n}}$ is a linearly independent subset of a *n*-dimensional vector space *V*, then \mathcal{B} is a basis for *V*
- (65) If $\mathcal{B} = {\mathbf{v_1}, \cdots, \mathbf{v_n}}$ is a spanning subset of a *n*-dimensional vector space *V*, then \mathcal{B} is a basis for *V*
- (66) $\dim(P_4) = 4$
- (67) If \mathcal{B} is a basis for \mathbb{R}^n and P is a matrix with the vectors of \mathcal{B} as its columns, then $P\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$ (the coordinates of \mathbf{x} with respect to \mathcal{B})
- (68) If $\mathcal{B} = \{\mathbf{b_1}, \cdots, \mathbf{b_n}\}$ and \mathcal{C} are bases of \mathbb{R}^n and $P = [[\mathbf{b_1}]_{\mathcal{C}} \cdots [\mathbf{b_n}]_{\mathcal{C}}]$, then $P[\mathbf{x}]_{\mathcal{C}} = [\mathbf{x}]_{\mathcal{B}}$
- (69) If $\mathcal{B} = \{\mathbf{e_1}, \cdots, \mathbf{e_n}\}$ is the standard basis of \mathbb{R}^n , then $[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$
- (70) $Rank(A) = Rank(A^T)$

Chapter 5: Eigenvalues and Eigenvectors

- (71) A 3 \times 3 matrix with eigenvalues $\lambda = 1, 2, 4$ must be diagonalizable
- (72) A 3 \times 3 matrix with eigenvalues $\lambda = 1, 1, 2$ is never diagonalizable
- (73) Every matrix is diagonalizable
- (74) If A is similar to B, then det(A) = det(B)
- (75) If A is similar to B, then A and B have the same eigenvalues
- (76) If A is diagonalizable, then det(A) is the product of the eigenvalues of A
- (77) If A is similar to B, then A and B have the same eigenvectors

- (78) If A is invertible, then A is diagonalizable
- (79) If A is diagonalizable, then A is invertible
- (80) If A is similar to B, then A^2 is similar to B^2
- (81) If A is diagonalizable and invertible, then A^{-1} is diagonalizable
- (82) If $\lambda = 0$ is an eigenvalue of A, then A is not invertible
- (83) (Nonzero) Eigenvectors corresponding to different eigenvalues of A are linearly independent
- (84) Every matrix has a real eigenvalue
- (85) Every matrix has a complex eigenvalue
- (86) If the characteristic polynomial of A is $\lambda^2 3\lambda + 2 = 0$, then $A^2 3A + 2I = O$ (the zero-matrix)

Chapter 6: Orthogonality and Least-Squares

- (87) If $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on a subspace W, then $\hat{\mathbf{x}}$ is perpendicular to \mathbf{x}
- (88) $\hat{\hat{\mathbf{x}}} = \hat{\mathbf{x}}$
- (89) The orthogonal projection of \mathbf{x} on W^{\perp} is $\mathbf{x} \hat{\mathbf{x}}$
- (90) Every (nonzero) subspace W has an orthonormal basis
- (91) $W \cap W^{\perp} = \{\mathbf{0}\}$
- (92) $AA^T \mathbf{x}$ is the projection of \mathbf{x} on Col(A)
- (93) Same, but the columns of A are orthonormal
- (94) $Rank(A^TA) = Rank(A)$
- (95) If Q is an orthogonal matrix, then Q is invertible

- (96) If Q is a matrix with orthonormal columns, then $||Q\mathbf{x}|| = ||\mathbf{x}||$
- (97) An orthogonal set without the zero-vector is linearly independent
- (98) The orthogonal projection of **v** on $W = Span \{\mathbf{u}\}$ is $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$
- (99) An orthogonal matrix has orthogonal columns
- (100) If $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$, then $\hat{\mathbf{x}}$ is the orthogonal projection of \mathbf{x} on Col(A).
- (101) If $\hat{\mathbf{x}}$ is a least-squares solution of $A\mathbf{x} = \mathbf{b}$, then $A\hat{\mathbf{x}}$ is the point on Col(A) that is closest to \mathbf{b}
- (102) $A\mathbf{x} = \mathbf{b}$ has only one least-squares solution
- (103) If $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$, then **u** is orthogonal to **v** (assume that everything is real)
- (104) $\int_0^1 f(x)g(x)dx \le \left(\int_0^1 (f(x))^2 dx\right)^{\frac{1}{2}} \left(\int_0^1 (g(x))^2 dx\right)^{\frac{1}{2}}$
- (105) The product of two orthogonal matrices (it it's defined) is orthogonal nal
- (106) Col(A) is orthogonal to $Nul(A^T)$

Chapter 7: Symmetric Matrices

- (107) If A is symmetric, then eigenvectors corresponding to different eigenvalues of A are orthogonal
- (108) A symmetric matrix has only real eigenvalues
- (109) Linearly independent eigenvectors of a symmetric matrix are orthogonal
- (110) If A is symmetric, then it is orthogonally diagonalizable
- (111) If A is orthogonally diagonalizable, then it is symmetric