111 TRUE/FALSE QUESTIONS

Chapter 1: Systems of Linear Equations

(1) A system of 3 linear equations in 2 unknowns must have no solution

(2) A system of 2 linear equations in 3 unknowns could have exactly one solution

(3) A system of linear equations could have exactly two solutions

(4) If there’s a pivot in every row of A, then $Ax = b$ is consistent for every b

(5) If the augmented matrix has a pivot in the last column, then $Ax = b$ is inconsistent

(6) If A has a row of zeros, then $Ax = b$ is inconsistent for all b

(7) $Ax = 0$ is always consistent

(8) If $\{u, v, w\}$ is linearly dependent then $\{Au, Av, Aw\}$ is also linearly dependent for every A

(9) If $\{u, v, w\}$ is linearly independent and $\{v, w, p\}$ is linearly independent, then so is $\{u, v, w, p\}$

(10) If $\{u, v, w\}$ is linearly dependent, then u is in the span of $\{v, w\}$

(11) If $\{u, v, w\}$ is linearly dependent and $\{u, v\}$ is linearly independent, then w is in the span of $\{u, v\}$

(12) If T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3, then the matrix A of T is a 2×3 matrix

Date: Thursday, March 14, 2019.
(13) If \(T(cu) = cT(u) \) for every real number \(c \), then \(T \) is a linear transformation

(14) If \(T(u + v) = T(u) + T(v) \) for all \(u \) and \(v \), then \(T \) is a linear transformation

(15) If \(T(u + cv) = T(u) + cT(v) \) for all \(u \) and \(v \) and every real number \(c \), then \(T \) is a linear transformation

(16) If \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is linear, then \(T \) cannot be onto \(\mathbb{R}^3 \)

(17) If \(T \) is one-to-one and \(\{u, v, w\} \) is linearly independent, then \(\{T(u), T(v), T(w)\} \) is also linearly independent

Chapter 2: Matrix Algebra

(18) \(AB + B^TA^T \) is always symmetric

(19) Any matrix \(A \) can be written as a sum of a symmetric \((A^T = A)\) and antisymmetric \((A^T = -A)\) matrix

(20) \((AB)^{-1} = A^{-1}B^{-1}\)

(21) If \(AB = AC \), then \(B = C \)

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{bmatrix}
\]

is not invertible

(22) \([1 2 3]

(23) If \(AB = I \) for some \(B \), then \(A \) is invertible

(24) A \(3 \times 2 \) matrix could be invertible

(25) A \(2 \times 3 \) matrix could be invertible

(26) If \(AB \) is invertible, then \(A \) and \(B \) are invertible

(27) Same, but this time \(A \) and \(B \) are square

(28) If \(Nul(A) = \{0\} \), then \(A \) is invertible
(29) Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has a matrix

(30) If $T : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, then T is onto \mathbb{R}^n

(31) The row-operations that transform A to I also transform I to A^{-1}

(32) If A is square and $Ax = 0$ implies $x = 0$, then A is row-equivalent to the identity matrix

Chapter 3: Determinants

(33) In general, $\det(2A) = 2 \det(A)$

(34) $\det(A + B) = \det(A) + \det(B)$

(35) If $\det(A^2) + 2 \det(A) + \det(I) = 0$, then A is invertible

(36) $\det(A^{-1}) = -\det(A)$

(37) If A^{100} is invertible, then A is invertible

(38) If $\det(A) = 1$ and A has only integer entries, then A^{-1} has integer entries

(39) If $\det(A) = 1$ and A and b have only integer entries, then the solution x to $Ax = b$ has only integer entries

Chapter 4: Vector Spaces and Subspaces

(40) $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0\}$ is a subspace of \mathbb{R}^2

(41) The union of two subspaces of V is still a subspace of V

(42) The intersection of two subspaces of V is still a subspace of V

(43) Given any basis B of V, and a subspace W of V, then there is a subset of B that is a basis of W

(44) \mathbb{R}^2 is a subspace of \mathbb{R}^3
(45) \(Nul \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = Span \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \)

(46) For a fixed \(b \neq 0 \), the set of solutions to \(Ax = b \) is a subspace of \(\mathbb{R}^n \)

(47) If \(A \) is a \(4 \times 6 \) matrix with 2 pivot columns, then \(Nul(A) = \mathbb{R}^4 \)

(48) If \(A \) is \(m \times n \) and has \(n \) pivot columns, then \(Nul(A) = \{0\} \)

(49) If \(A \) is \(m \times n \) and has \(n \) pivot columns, then \(Col(A) = \mathbb{R}^m \)

(50) If \(A \) is row-equivalent to \(B \), then \(Col(A) = Col(B) \)

(51) \(Rank(A^2) = Rank(A) \)

(52) The set \(W \) of polynomials of degree \(n \) is a subspace of the set \(V \) of polynomials (of any degree)

(53) If \(A \) is \(5 \times 9 \), then \(Nul(A) \) is at least 4 dimensional

(54) \(\{ cos^2(t), \sin^2(t), \cos(2t) \} \) is linearly dependent

(55) \(\mathbb{Z} \) is a subspace of \(\mathbb{R} \)

(56) If \(W \) is a subset of \(V \) such that 0 (the zero vector in \(V \)) is in \(W \) and \(W \) is closed under addition, then \(W \) is a subspace of \(V \)

(57) If 0 is in \(W \) and \(W \) is closed under scalar multiplication, then \(W \) is a subspace of \(V \)

(58) If \(W \) is closed under addition and scalar multiplication, then \(W \) is a subspace of \(V \)

(59) A vector space \(V \) is always a subspace of something

(60) If \(A \) is row-equivalent to \(B \), then the pivot columns of \(B \) form a basis for \(Col(A) \)

(61) Row-operations preserve the span of the columns of a matrix
(62) Row-operations preserve the linear independence relations of the columns of a matrix

(63) If \(B \) spans a space \(V \), then there is a subset of \(B \) that is a basis for \(V \)

(64) If \(B = \{v_1, \ldots, v_n\} \) is a linearly independent subset of a \(n \)-dimensional vector space \(V \), then \(B \) is a basis for \(V \)

(65) If \(B = \{v_1, \ldots, v_n\} \) is a spanning subset of a \(n \)-dimensional vector space \(V \), then \(B \) is a basis for \(V \)

(66) \(\dim(P_4) = 4 \)

(67) If \(B \) is a basis for \(\mathbb{R}^n \) and \(P \) is a matrix with the vectors of \(B \) as its columns, then \(Px = [x]_B \) (the coordinates of \(x \) with respect to \(B \))

(68) If \(B = \{b_1, \ldots, b_n\} \) and \(C \) are bases of \(\mathbb{R}^n \) and \(P = [[b_1]_C \ldots [b_n]_C] \), then \(P[x]_C = [x]_B \)

(69) If \(B = \{e_1, \ldots, e_n\} \) is the standard basis of \(\mathbb{R}^n \), then \([x]_B = x \)

(70) \(\text{Rank}(A) = \text{Rank}(A^T) \)

Chapter 5: Eigenvalues and Eigenvectors

(71) A \(3 \times 3 \) matrix with eigenvalues \(\lambda = 1, 2, 4 \) must be diagonalizable

(72) A \(3 \times 3 \) matrix with eigenvalues \(\lambda = 1, 1, 2 \) is never diagonalizable

(73) Every matrix is diagonalizable

(74) If \(A \) is similar to \(B \), then \(\det(A) = \det(B) \)

(75) If \(A \) is similar to \(B \), then \(A \) and \(B \) have the same eigenvalues

(76) If \(A \) is diagonalizable, then \(\det(A) \) is the product of the eigenvalues of \(A \)

(77) If \(A \) is similar to \(B \), then \(A \) and \(B \) have the same eigenvectors
6 111 TRUE/FALSE QUESTIONS

(78) If A is invertible, then A is diagonalizable

(79) If A is diagonalizable, then A is invertible

(80) If A is similar to B, then A^2 is similar to B^2

(81) If A is diagonalizable and invertible, then A^{-1} is diagonalizable

(82) If $\lambda = 0$ is an eigenvalue of A, then A is not invertible

(83) (Nonzero) Eigenvectors corresponding to different eigenvalues of A are linearly independent

(84) Every matrix has a real eigenvalue

(85) Every matrix has a complex eigenvalue

(86) If the characteristic polynomial of A is $\lambda^2 - 3\lambda + 2 = 0$, then $A^2 - 3A + 2I = O$ (the zero-matrix)

Chapter 6: Orthogonality and Least-Squares

(87) If \hat{x} is the orthogonal projection of x on a subspace W, then \hat{x} is perpendicular to x

(88) $\hat{x} = \hat{x}$

(89) The orthogonal projection of x on W^\perp is $x - \hat{x}$

(90) Every (nonzero) subspace W has an orthonormal basis

(91) $W \cap W^\perp = \{0\}$

(92) $AA^T x$ is the projection of x on $Col(A)$

(93) Same, but the columns of A are orthonormal

(94) $\text{Rank}(A^T A) = \text{Rank}(A)$

(95) If Q is an orthogonal matrix, then Q is invertible
(96) If Q is a matrix with orthonormal columns, then $\|Qx\| = \|x\|$

(97) An orthogonal set without the zero-vector is linearly independent

(98) The orthogonal projection of v on $W = \text{Span} \{u\}$ is $\left(\frac{u \cdot v}{v \cdot v} \right) v$

(99) An orthogonal matrix has orthogonal columns

(100) If \hat{x} is a least-squares solution of $Ax = b$, then \hat{x} is the orthogonal projection of x on $Col(A)$.

(101) If \hat{x} is a least-squares solution of $Ax = b$, then $A\hat{x}$ is the point on $Col(A)$ that is closest to b

(102) $Ax = b$ has only one least-squares solution

(103) If $\|u + v\|^2 = \|u\|^2 + \|v\|^2$, then u is orthogonal to v (assume that everything is real)

(104) $\int_0^1 f(x)g(x)dx \leq \left(\int_0^1 (f(x))^2dx \right)^{\frac{1}{2}} \left(\int_0^1 (g(x))^2dx \right)^{\frac{1}{2}}$

(105) The product of two orthogonal matrices (it it’s defined) is orthogonal

(106) $Col(A)$ is orthogonal to $Nul(A^T)$

Chapter 7: Symmetric Matrices

(107) If A is symmetric, then eigenvectors corresponding to different eigenvalues of A are orthogonal

(108) A symmetric matrix has only real eigenvalues

(109) Linearly independent eigenvectors of a symmetric matrix are orthogonal

(110) If A is symmetric, then it is orthogonally diagonalizable

(111) If A is orthogonally diagonalizable, then it is symmetric