Previously on Peyam Hatlesian Galactica, we discovered the notion of a \(V \), which is this fantastic concept that captured the essence of \(\mathbb{R}^n \), and we've seen that a lot of things are \(V \)s.

Problem: It's a pain to check that something is a \(V \)!

10 Conditions: Ain't nobody got time for that!!!

Luckily, it turns out there's a quicker way to check something is a \(V \)\(\text{\textperiodcentered} \)

1. Definition(s)

Namely, just show it's a subspace of another \(V \)

Def: Let \(W \) be a subset of \(V \) (= vector space)

Then \(W \) is a subspace of \(V \) if \(W \) is itself a \(V \)

\[\text{(special kind of subset of } V \text{, one that is itself a } V) \]

Analysis: If \(V = \text{all of } \text{r.e.d.e.d} \), \(W = \text{subset of } \text{r.e.d.e.d that is itself a } \text{r.e.d.e.d} \)

Now this is not very practical; it doesn't really tell you how to know something is a subspace. Luckily there's a better def:

Claim: \(W \) is a subspace of \(V \) if and only if:

1. \(\emptyset \) is in \(W \) \((\emptyset = \text{empty vector of } V) \)
2. If \(x \) and \(y \) are in \(W \), \(x + y \) are in \(W \) ("closed under")
3. If \(x \) is in \(W \) and \(c \) is in \(F \), \(cx \) is in \(W \) ("closed under")
What is this saying? To show something is a subspace, don't need all 10 properties, only need 3 (buy 3 get 7 free)

WHY? \(\implies \) suppose (a)-(c) hold, then \(W \) is a vs

Need to check (1)-(10) (from last time)

Point: we actually don't have to! Most of these come for free.

Ex: check \(x + y = y + x \)

Since \(x, y \in V \), \(x + y = y + x \)

\[\forall x, y \in W, x + y = y + x \] (we say \(W \) inherits the properties from \(V \))

Only issue: if \(x \in W \), we only know that \(-x \) is in \(V \)

\[\begin{array}{c}
\forall x \in W \\
\exists y \in W
\end{array} \]

But \(-x = (-1)x \in W \) (by (c))

So \(-x \) is indeed in \(W \)

\(\implies \) suppose \(W \) is a vs, show (a)-(c) hold

(a) If \(x, y \) are in \(W \), then \(x + y \) is in \(W \) (\(\forall x, y \in W \\Rightarrow x + y \in W \))

(c) simlarly

(b) \(0 \) in \(W \)? \((0 = \) zero vector in \(V) \)

\[\begin{array}{c}
\forall x \in W \\
\exists y \in W
\end{array} \]

On the one hand: \(x + 0 = x \neq x \in V \)

\[\exists x \in W \]

But since \(W \) is a vs, it has its own zero vector with \(x + 0' = x \neq x \in W \)
THEN \[x + a = x + a' \Rightarrow a = a' \in W \]
so \(a \in W \).

II - Example: (and non-example)

EX

\[W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | \text{in } M_{2x2}, a, b, c \in \mathbb{R} \right\} \]

(Upper - triangular matrices)

Note Here \(V = M_{2x2} \)

(a) is \(\begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix} \) in \(W \): \(\begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \), \(a, b, c \in \mathbb{R} \)

(b) if \(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \) and \(\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} \) are in \(W \), then

\[
\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} + \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} = \begin{bmatrix} a + a' & b + b' \\ 0 & c + c' \end{bmatrix} \text{ is in } W
\]

(c) if \(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \) is in \(W \) and \(c \) is in \(F \), then

\[
c \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} ca & cb \\ 0 & cc \end{bmatrix} \text{ is in } W
\]

EX

\(W = \text{ polynomials of degree exactly 2} \)

No \(x + \text{ not in } W \)

Let \(x^2 + (-x^2 + 1) = 1 \) \(\not\in \text{ not in } W \)
\[\text{EX} \quad W = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0 \} \]

\[\text{YES} \quad W = \{ (0, 0) \} \]

Fact
\{ 0 \} and \ V \ \text{are always subspaces of} \ V

\[V = \text{space of differentiable functions from} \ \mathbb{R} \ \text{to} \ \mathbb{R} \quad (\mathcal{C}(\mathbb{R})) \]

\[\text{EX} \quad W = \{ y'' - 5y' + 6y = 0 \} \]

(a) \ \text{0 in} \ W \quad 0'' - 5(0') + 6(0) = 0 \quad \text{YES}

(b) \ \text{Suppose} \ y_1 \ \text{and} \ y_2 \ \text{in} \ W, \ \text{so} \ y_1'' - 5y_1' + 6y_1 = 0 \quad y_2'' - 5y_2' + 6y_2 = 0

\text{Show} \ y_1 + y_2 \ \text{is in} \ W:

\[(y_1 + y_2)'' - 5(y_1 + y_2)' + 6(y_1 + y_2) = 0 \]

\[= y_1'' + y_2'' - 5(y_1' + y_2') + 6y_1 + 6y_2 \]

\[= (y_1'' - 5y_1' + 6y_1) + (y_2'' - 5y_2' + 6y_2) = 0 + 0 = 0 \quad \text{YES} \]

(c) \ \text{Similar}

\[\text{Point} \quad \text{can write differential equation in terms of linear algebra} \]

\[\text{solution to (linear) differential equation are subspaces} \]

\[\text{(even though we don't know what the solution are, we know they form a subspace)} \]
III. UNION AND INTERSECTION

Since subspaces are so great, you may ask: how can we create new subspaces from old ones? We'll discuss this more next time when we talk about span, but for now, there's a neat way of forming subspaces, and it lies in the intersection of linear sets and linear algebra.

THEOREM: The intersection of any number of subspaces of V is a subspace of V.

Why? Let F be a family of subspaces of V and W be their intersection.

(a) $0 \in W$?

For all $W \in F$, since W is a subspace of V, $0 \in W$.

So $0 \in W$ (by def. of intersection).

(b) Suppose $x, y \in W$, then $x + y \in F$.

$x, y \in W$ (def. of W).

Since W is a subspace of V, $x + y \in W$.

Since W was arbitrary, $x + y \in W$ (def. of F).

(c) If $x \in W$ and $c \in W$, then $cx \in W$.

$x \in W$ so $cx \in W$ (since W is a subspace of V.

Since W is arbitrary, $cx \in W$.
Hence W is a subspace of V.

Note: in general, the union of subspaces is not a subspace!

Example: Let $W_1 = x-ax_1$ in m^1,

$W_2 = y-ax_1$ in m^2

Then $W_1 \cup W_2 = x-ax_1$ and $y-ax_1$

Not a subspace, because $(1,0) \in W_1 \cup W_2$ (since $(1,0) \in W_1$) and $(0,1) \in W_1 \cup W_2$ (since $(0,1) \in W_2$)

$W_1 \cup W_2 = \{(1,1)\} \not\subset$ in $W_1 \cup W_2$

Note: $W_1 \cap W_2 = \{0,0\}$, subspace of m^2.