LECTURE 3 - LINEAR COMBINATIONS AND SPAN (SECTION 1.4)

FRIDAY, APRIL 5, 2019

HAPPY FRIDAY, AND TUESDAY! WE’LL DISCOVER A NEAT WAY OF COMBINING VECTORS, WHICH NATURALLY LEADS TO THE CONCEPT OF A LINEAR COMBINATION.

I - LINEAR COMBINATIONS

DEFF. \(x \in V \) IS A LINEAR COMBINATION OF \(U_1, \ldots, U_n \in V \) IF

\[x = a_1 U_1 + \cdots + a_n U_n \quad \text{for some} \ a_1, \ldots, a_n \in \mathbb{F} \]

EX. \(\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \) IS A LINEAR COMBINATION OF \(U_1 = \begin{pmatrix} 10 \\ 01 \end{pmatrix} \) AND \(U_2 = \begin{pmatrix} 01 \\ 10 \end{pmatrix} \)

[\(\text{Hence} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} = 2 \begin{pmatrix} 10 \\ 01 \end{pmatrix} + 3 \begin{pmatrix} 01 \\ 10 \end{pmatrix} \)]

\[X = a_1 U_1 + a_2 U_2 \]

EX. IS \(X = (0, -2, 4) \) A LINEAR COMBINATION OF \(U_1 = (1, 1, 3), U_2 = (2, -1, 0), U_3 = (1, 3, -1) \)?

AND THERE \(a_1, a_2, a_3 \) WITH \(U_3 = (a_1 U_1 + a_2 U_2 + a_3 U_3) \)?

\[X = a_1 U_1 + a_2 U_2 + a_3 U_3 \]

\[(0, -2, 4) = a_1 (1, 1, 3) + a_2 (2, -1, 0) + a_3 (1, 3, -1) \]

\[(0, -2, 4) = (a_1 + 2a_2 + a_3, a_1 - a_2 + 3a_3, 3a_1 - a_3) \]

\[\begin{cases} a_1 + 2a_2 + a_3 = 0 \\ a_1 - a_2 + 3a_3 = -2 \\ 3a_1 - a_3 = 4 \end{cases} \]

SYSTEM OF EQUATIONS

SOLVE THIS (USING ROW-REDUCTION - SEE PAGE 7, OR SEE TECHNIQUE IN THE BOOK)
\[
\begin{align*}
\begin{aligned}
& a_1 = 1 \\
& a_2 = 0 \\
& a_3 = -1
\end{aligned}
\end{align*}
\]

\[
(0, -2, 4) = 1(1, 1, 3) + 0(2, -1, 0) + (-1)(1, 3, -1)
\]

Now, of course, once you've taken one linear combo, you may ask: What about all the possible linear combinations?

And this is indeed useful and has its own name.

II - Span

Def: If \(S \) is any subset of \(V \), then \(\text{span}(S) \) is the set of all finite linear combinations of vectors in \(V \).

\[
x \in \text{span}(S) \iff x = a_1v_1 + \cdots + a_nv_n \text{ for some } v_1, \ldots, v_n \in S
\]

Note: By convention, \(\text{span}(\emptyset) = \{0\} \).

Ex: Is \(-5x^2 - 2x + 6 \) in \(\text{span}\{x^2 + 3x + 7, 4x^2 + 5x + 7\} \)?

\[
\begin{align*}
-5x^2 - 2x + 6 &= a_1(x^2 + 3x + 7) + a_2(4x^2 + 5x + 7) \\
&= a_1x^2 + 3a_1x + 7a_1 + 4a_2x^2 + 5a_2x + 7a_2 \\
-5x^2 - 2x + 6 &= (a_1 + 4a_2)x^2 + (3a_1 + 5a_2)x + 7a_1 + 7a_2
\end{align*}
\]

\[
\begin{align*}
a_1 + 4a_2 &= -5 \\
3a_1 + 5a_2 &= -2 \\
7a_1 + 7a_2 &= 6
\end{align*}
\]

\[\text{No solution! So } \boxed{\text{No}}\]

Note: Think of span as the info expressed by a set. Here, cannot express \(-5x^2 - 2x + 6 \) using the info we have; need another piece of info (out of reach).
EX \[\text{WHAT IS } \text{SPAN} \left\{ \begin{bmatrix} 10 \\ 00 \end{bmatrix}, \begin{bmatrix} 01 \\ 10 \end{bmatrix}, \begin{bmatrix} 00 \\ 01 \end{bmatrix} \right\} \]

\[= a_1 \begin{bmatrix} 10 \\ 00 \end{bmatrix} + a_2 \begin{bmatrix} 01 \\ 10 \end{bmatrix} + a_3 \begin{bmatrix} 00 \\ 01 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \]

Any set of symmetric 2x2 matrices

Now you may wonder: How does this tie back to our concept of subspace?

\(\therefore \text{SPAN IS A SUBSPACE} \)

Theorem \[\text{IF } S \text{ IS ANY SUBSET OF } V \ (VS), \]
\[\text{THEN } \text{SPAN}(S) \text{ IS A SUBSPACE OF } V \]

This gives us yet another way of producing subspaces: Take any set \(S \) and consider its span.

Note \[\text{IF } S = \emptyset, \text{ THEN } \text{SPAN}(S) = \text{SPAN}(\emptyset) = \{0\} \rightarrow \text{SUBSPACE} \]

Proof \[\text{CHECK (a)-(c) HOLD FROM LAST TIME} \]

(a) \[0 \in \text{SPAN}(S) \]

(b) \[\text{IF } x, y \in \text{SPAN}(S), \text{ THEN:} \]
\[x = a_1 u_1 + \cdots + a_n u_n, \quad y = b_1 v_1 + \cdots + b_m v_m, \quad a_i, b_j \in \mathbb{F} \]
\[u_i, v_j \in S \]

Then \[x + y = a_1 u_1 + \cdots + a_n u_n + b_1 v_1 + \cdots + b_m v_m \in \text{SPAN}(S) \]

(c) \[\text{LINEAR COMB OF ELEMENTS IN } S \]
\[\text{SO } x + y \in \text{SPAN}(S) \]
(c) If \(x \in \text{span}(S) \) and \(c \in F \), then

\[
x = a_1 u_1 + \cdots + a_n u_n, \quad a_1, \ldots, a_n \in F, \quad u_1, \ldots, u_n \in S
\]

then \(cx = c(a_1 u_1 + \cdots + a_n u_n) = (ca_1)u_1 + \cdots + (ca_n)u_n \in \text{span}(S) \).

Hence \(\text{span}(S) \) is a subspace of \(V \).

But wait, there's more! \(\text{span}(S) \) is not only a subspace, but an "optimal" subspace in the following sense.

Claim: If \(W \) is a subspace of \(V \) and \(S \subseteq W \), then \(\text{span}(S) \subseteq W \) as well.

Points: Any subspace of \(V \) containing \(S \) must also contain \(\text{span}(S) \).

In other words: \(\text{span}(S) \) is the smallest subspace containing \(S \) ("optimal" in the sense that any other subspace is strictly larger).

Why? Let \(W \) be a subspace of \(V \) with \(S \subseteq W \).

Show \(\text{span}(S) \subseteq W \).

Let \(x \in \text{span}(S) \).

Then \(x = a_1 u_1 + \cdots + a_n u_n, \quad u_1, \ldots, u_n \in S, \quad a_1, \ldots, a_n \in F \).
Since $u_1, \ldots, u_n \in S$ and $S \subseteq W$, we have $u_1, \ldots, u_n \in W$.

And since $u_1, \ldots, u_n \in W$ and W is a subspace, $x = a_1 u_1 + \cdots + a_n u_n \in W \checkmark$ (see HW #2).

So $x \in W$ and hence spans $S \subseteq W$.

Now one last question we could ask is: How big is the span of a set? Could it be equal to the whole space V?

Def. S spans/generates V if $\text{span}(S) = V$.

Non-EX

<table>
<thead>
<tr>
<th>$\text{span}(S)$</th>
<th>V</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-EX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ex. Let $S = \{x^2, x^2 + x, x^2 + x + 1\}$

Claim. S spans P_2.

Why? Let $a x^2 + b x + c \in P_2$ be arbitrary.

WIF a, b, c are with

$$a x^2 + b x + c = a_1 x^2 + a_2 (x^2 + x) + a_3 (x^2 + x + 1)$$
$$= a_1 x^2 + a_2 x^2 + a_2 x + a_3 x^2 + a_3 x + a_3$$
$$= (a_1 + a_2 + a_3) x^2 + (a_2 + a_3) x + a_3$$
$$= a_1 x^2 + b x + c$$
\[\begin{align*}
\Rightarrow & \quad \begin{cases} a_1 + a_2 + a_3 = a \\ a_2 + a_1 = b \\ a_1 = c \end{cases} \\
\Rightarrow & \quad \begin{cases} a_1 = a - a_2 - a_3 = a - (b - c) - c = a - b \\ a_2 = b - a_1 = b - c \\ a_3 = c \end{cases} \\
\end{align*} \]

so \[a x^3 + b x + c = (a - b) x^2 + (b - c) (x^2 + x) + c (x^2 + x + 1) \]

Now of course this is a horribly inefficient way to determine if a set generates the whole space or not. Luckily, there are some ways more efficient ways, so stick around until next time!
APPENDIX: How to solve

\[
\begin{align*}
 a_1 + 2a_2 + a_3 &= 0 \\
 a_1 - a_2 + 3a_3 &= -2 \\
 3a_1 - a_3 &= 4
\end{align*}
\]

AUGMENTED MATRIX

\[
\begin{bmatrix}
 1 & 2 & 1 & 0 \\
 0 & -1 & 3 & -2 \\
 3 & 0 & -1 & 4
\end{bmatrix}
\]

\((x-1)(x-3)\)

(Enos: INTERCHANGE on MUARP in NOW or ANY NOW TO AUGMENT)

\[
\begin{bmatrix}
 1 & 2 & 1 & 0 \\
 0 & -1 & 3 & -2 \\
 0 & -6 & -4 & 4
\end{bmatrix}
\]

\((x-2)\)

\[
\begin{bmatrix}
 1 & 2 & 1 & 0 \\
 0 & -1 & 3 & -2 \\
 0 & 0 & -8 & 4
\end{bmatrix}
\]

\((\div -8)\)

NOW-ECHELON FORM

\((\text{NEF})\)

(THINGS TO THE LEFT OF THE PIVOTS AN E 0)

\[
\begin{bmatrix}
 1 & 2 & 1 & 0 \\
 0 & -1 & 3 & -2 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\]

\((x-1)\)

\[
\begin{bmatrix}
 1 & 2 & 0 & 1 \\
 0 & -3 & 0 & 0 \\
 0 & 0 & 1 & -1
\end{bmatrix}
\]

\((\div -3)\)

\[
\begin{bmatrix}
 1 & 2 & 0 & 1 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -1
\end{bmatrix}
\]

\((x-2)\)

\[
\begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -1
\end{bmatrix}
\]

\[
\begin{align*}
 a_1 &= 1 \\
 a_2 &= 0 \\
 a_3 &= -1
\end{align*}
\]

REDUCED NEF \((\text{RNEF})\)

(PIVOTS = \(1\), ANYTHING ABOVE PIVOT = 0)