LECTURE 5 - BASIS AND DIMENSION (I) (SECTION 1.6)

WELCOME TO THE HEART AND SOUL OF LINEAR ALGEBRA: BASIS AND DIMENSION. TODAY WE'LL SHOW THAT EVEN THOUGH VS ARE INFINITE, WE CAN DESCRIBE THEM USING ONLY FINITELY MANY VECTORS.

I - DEFINITION AND EXAMPLES

DEF: 1) A BASIS \(\beta \) for \(V \) is a set with \(\text{span}(\beta) = V \)

2) \(\dim(V) = \text{number of vectors in any basis for } V \)

(SO TO SHOW \(\beta \) IS A BASIS, JUST SHOW IT'S LI AND THAT IT SPANS \(V \).
TO FIND \(\dim(V) \), JUST COUNT THE # OF VECTORS IN \(\beta \).)

EX 1 \(V = \mathbb{R}^n \)

1) Basis \(\beta = \{ e_1, \ldots, e_n \} \)
 \(e_1 = (1, 0, \ldots, 0) \), \(e_2 = (0, 1, \ldots, 0) \), \ldots , \(e_n = (0, \ldots, 0, 1) \)

2) \(\dim(\mathbb{R}^n) = n \)

EX 2 \(V = P_n \) (POLYS OF DEG \(\leq n \))

1) basis \(\beta = \{ 1, x, \ldots, x^n \} \)

2) \(\dim(P_n) = n+1 \) \(\Delta \)

EX 3 \(V = P \) (ALL POLYS, \(x^4 + 1, x^3 - 1, \ldots \))

1) Basis \(\beta = \{ 1, x, x^2, x^3, \ldots \} \)

2) \(\dim(P) = \infty \) (SOME VS ARE \(\infty \)-DIMENSIONAL)
EX. \[V = \{ v \} \]

1) \[B \] = \[\emptyset \]

2) \[\dim \{ 0 \} = 0 \]

Two Issues

1) **Does Every Vector Space Have a Basis?**
2) **Do Any Two Bases of \(V \) Have the Same Number of Vectors?** (Note: \(\dim \) is not well-defined!)

Existence of a Basis

Fact Every Vector Space has a basis (see Section 1.7; uses Zorn’s Lemma).

(I’m not going to show this, but what I’m going to show you is a special case, namely every finite-dimensional vector space has a basis.)

Theorem If \(V = \text{span} \{ S \} \) for some finite set \(S \), then some subset of \(S \) is a basis for \(V \) (and hence \(V \) has a basis).

Ex. Suppose \(V = \text{span} \{ (2,-3,5), (8,-14,20), (1,0,-2), (0,2,-1) \} \). Find a basis for \(V \).

Idea: Test \((2,-3,5) \) and successively remove linearly dependent vectors.

1) \((2,-3,5) \)

2) \((8,-14,20) \) is \(\text{span} \{ (2,-3,5) \} \)
 \[\xrightarrow{\text{ redundant}} \]

3) \((1,0,-2) \) is \(\text{span} \{ (2,-3,5) \} \)
 \[\xrightarrow{\text{ redundant}} \]

4) \((0,2,-1) \) is \(\text{span} \{ (2,-3,5), (1,0,-2) \} \)
 \[\xrightarrow{\text{ redundant}} \]

5) \((7,8,10) \) is \(\text{span} \{ (2,-3,5), (1,0,-2), (0,2,-1) \} \)
 \[\xrightarrow{\text{ redundant}} \]
PROOF OF THEOREM

(Notice how we have done things iteratively in the previous ex)

Induction on \(N = \text{size of } S = |S| \)

1) Let \(P_n \) be the prop "if \(V = \text{span}(S), |S| = n \), then some subset of \(S \) is a basis for \(V \)"

2) Base Case \(N = 0 \) \(|S| = 0 \Rightarrow S = \emptyset \)
 Then \(V = \text{span}(S) = \text{span}(\emptyset) = \{0\} \)
 \[\text{basis } = \emptyset \subseteq S \cup V \]

3) Inductive Step
 Suppose \(P_n \) is true, show \(P_{n+1} \) is true

 Suppose \(V = \text{span}(S), |S| = n+1 \), show some subset of \(S \) is a basis

 Let \(S = \{u_1, \ldots, u_{n+1}\} \)

 Claim: Consider \(S' = \{u_1, \ldots, u_n\} \), \(W = \text{span}(S') \)

 By the inductive hypothesis, some subset of \(S' \), say \(\{w_1, \ldots, w_m\} \), is a basis for \(W \) (use this to find a basis for \(V \))

 Case I: \(u_{n+1} \notin W \)

 Then let \(\beta = \{w_1, \ldots, w_m, u_{n+1}\} \subseteq S \subseteq S' \)
 \(\text{span } V \) (by inductive hypothesis)
 \(\subseteq S' \)

 So \(\beta \) is a basis for \(V \)

 \[\checkmark \]
Case 2 \[\text{Unit } \in W \]

Let \(\beta = \{ W_1, \ldots, W_n \} \subseteq S \)

And \(\text{span} (\beta) = \text{span} \{ W_1, \ldots, W_n \} = \text{span} \{ U_1, \ldots, U_n \} = \text{span} \{ U_1, \ldots, U_{n+1} \} = \text{span} \)

so \(\beta \) is a basis

Hence \(\text{span} \) is true, so \(\text{span} \) is true for all \(N \)

(for our purposes, the question of existence of a basis is settled, and now let's move on to the second issue: do any 2 bases of \(V \) have the same number of vectors? And thus follows from the following important theorem, which is that \(A \) would not exist)

III - THE REPLACEMENT THEOREM

Motivation

EX Let \(\text{lin} = \{ (2, -3, 5), (1, 0, -2) \} \) LT, \(M = 2 \)

\(\text{gen} = \{ (8, -12, 20), (7, 2, 0), (5, 2, -1) \} \) GENERATE / SPANN

\(\text{replacement theorem} \) (below) **NOTE**

1) \(|\text{lin}| \leq |\text{gen}| \) (M.N. 2 \(\leq 3 \); a lin set can never be strictly bigger than a span

2) Can add \(N - M = 3 - 2 = 1 \) element from \(\text{gen} \) to \(\text{lin} \) to get a set that also \(\text{spans} \)

In fact, let \(\mathcal{A} = \{(0, 2, -1)\} \subseteq \text{gen} \)
Then \(\text{lin} \cup H = \left\{ (2, -3, 5), (1, 0, -4), (0, 2, -1) \right\} \) span \(\mathbb{R}^3 \)

\[\text{lin} \subset \text{gen} \]

Ultra Important [Replacement Theorem] (Extension Theorem)

Let \(\text{lin} \) be a LI subset of \(V \) with \(M \) vectors

And \(\text{gen} \) be a spanning subset of \(V \) with \(N \) vectors

Then

1) \(M \leq N \) of

2) There is a subset \(H \) \(\subset \text{gen} \) with \(N-M \) vectors

such that \(\text{lin} \cup H \) spans \(V \)

Picture

\[\text{lin} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \quad \text{gen} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix}, \quad H = \cdots \]

\((M=3) \quad (N=5) \quad (N-M=2) \)

\[\text{lin} \cup H = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} \] span \(V \)

Remark

1) Replacement b/c you're replacing vectors in \(\text{gen} \), \(\text{w/} \) vectors in \(\text{lin} \) (usually better than \(\text{gen} \))

2) It's the number that matters, if \(M \) you can always wipe out all of \(\text{gen} \) to \(\text{lin} \)

3) \(N-M \) b/c we want \(\text{lin} \cup H \) to have size (at most \(N = \text{gen} \))

IV - Consequences (This theorem is important b/c of its consequences)

Corollary (Suppose \(V \) has a finite basis)

Every basis of \(V \) has the same \# of vectors

Why?

Let \(\beta \) be that finite basis with \(N \) vectors

Let \(\hat{\beta} \) be another basis of \(V \) (possibly \(\neq \beta \))

(Recall: \(\hat{\beta} \cup \beta \) span \(V \))
1) Suppose \(|X| > |\tilde{I}|\), so \(|X| > N\). Let \(p\) be a subset of \(X\) with \(n + 1\) elements where \(|L| = n + 1\).

\[L = \text{A LI subset of } X \text{ with } n + 1 \text{ elements} \]

Replacement shows \(|L| \leq |\text{GEN}|\).

\[N + 1 \leq N \implies 0 \leq 1\]

So, \(|X| \leq |\tilde{I}| = N\) (so \(X\) is finite).

2) Now let \(|X| = |\tilde{I}|\), \(\text{GEN} = \varnothing\).

Replacement: \(|L| \leq |\text{GEN}| = |\tilde{I}| < |X|\).

3) Hence, \(|\tilde{I}| = |X|\) .