Math 453 - Homework 1

Peyam Tabrizian

Friday, February 10, 2017

Reading: Chapter 1 and Section 2.2.1 of Chapter 2. I also highly recommend going through the Notation (section A in the appendix). The most important "review" concepts that we'll use for Chapter 2 are: the inequalities (a)-(f) and (i) in B2, the Gauss-Green Theorem (C2), the polar coordinate formula (Theorem 4 in C3), Convolution and properties of mollifiers (C5), the Dominated Convergence Theorem (Theorem 5 in E4) and Lebesgue's Differentiation Theorem (Theorem 6 in E4).

- Chapter 1: 5
- Chapter 2: 2

Hints and Discussion:

Hint for 5: This problem illustrates how amazing the multi-index notation actually is. Notice how similar this result looks like the Taylor's formula in one variable!

Note: Here $\alpha!$ means $\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$ and x^{α} means $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$.
This problem is a neat technique of turning a function of several variables into a function of one variable, sort of like what we did for Laplace's equation! Since g is a function of one variable, you can apply Taylor's formula in one variable to g, which says that, for some $\xi \in(0, t)$, we have

$$
g(t)=\sum_{m=0}^{k} \frac{t^{m}}{m!} g^{(m)}(0)+\frac{g^{k+1}(\xi)}{(k+1)!} t^{k+1}
$$

After calculating all the derivatives of g, let $t=1$. You are allowed to use the fact (without proof) from Math 200 that there are $\frac{|\alpha|!}{\alpha!}$ partial derivatives that are equal to a given $D^{\alpha} f$.

Hint for 2: In my opinion, the easiest way to do this it to apply brute-force by calculating $v_{x i x i}$. It's a bit messy, but a great way to practice the chain rule. Recall that a matrix O is orthogonal iff $O^{T} O=O O^{T}=I$, which reads as:

$$
\sum_{i=1}^{n} o_{k i} o_{j i}= \begin{cases}1 & \text { if } k=j \\ 0 & \text { if } k \neq j\end{cases}
$$

where $o_{k i}$ is the (k, i) entry of O.

Also, I apologize for the linear algebra in this problem, we won't do many linear algebra problems in this course (if at all).

