Math 121A — Homework 1

Peyam Tabrizian

Wednesday, April 3, 2019

Reading: Section 1.2. You can read section 1.1 if you want, it’s a gentle introduction to vectors in \mathbb{R}^n. In case you’re curious about fields, you might want to check out Appendix C, although in our class, fields will just be \mathbb{R} or \mathbb{C}.

Note: Make sure to write in complete sentences; you are graded not only on your answer, but also on your work. The problems marked optional are for extra practice; do not turn those in with your homework set. AP refers to the additional problem below. Finally, for the True/False on the homework, you do not need to justify your answer, but on the exam you might have T/F with justification.

- **Section 1.2:** 1, 7, 9, 17, 18, 20 (Optional: 8, 19, AP)

Optional Additional Problem: Let $V = \mathbb{R}$, but this time with new operations Peyamaddition \oplus and Peyamultiplication \odot defined by:

\[x \oplus y = x + y - 1 \]

\[c \odot x = cx + (1 - c) \]

Show that V is a vector space over \mathbb{R} under those two operations. What is cool is in that vector space, the zero vector 0 is 1.

Warning: Here the zero-vector 0 is not the real number 0. Similarly the additive inverse of x is not the real number $-x$. Figure out what they are. Also, be careful not to confuse scalar multiplication \odot with multiplication in \mathbb{R}. For example, for (VS 6), you have to prove that $(ab) \odot x = a \odot (b \odot x)$, where ab is regular.
multiplication of a and b. This problem is probably one of the most abstract problems in the course, this is why it’s optional. It’ll get better after that ;)}