Math 121A - Homework 4

Peyam Tabrizian

Wednesday, April 24, 2019

Reading: Sections 2.1, 2.2, 2.3. In 2.3, ignore the section on Applications. There will be more 2.3 problems on Homework 5 .

- Section 2.1: 14(c), 15, 17, 21, 28 (Optional: 16, 20, 37, 39, AP1, AP2)
- Section 2.2: 1, 5(b)(d)(f), 8, 13, 14, 16 (Optional: 5(a)(c)(e)(g), 10)
- Section 2.3: 1, 3, 11

Hint for 2.2.14: Apply your equality to the vectors x, x^{2}, \cdots, x^{n} respectively
Hint for 2.2.16: This is similar in spirit to the proof of the rank-nullity theorem. Let $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{m}}\right\}$ be a basis for $N(T)$, and extend this to a basis $\beta=$ $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{m}}, \mathbf{v}_{\mathbf{m}+\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ for V. Consider $\left\{T\left(\mathbf{v}_{\mathbf{m}+\mathbf{1}}\right), \cdots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ (shown in class to be a basis for $R(T))$, and extend this to a basis $\gamma=\left\{\mathbf{w}_{\mathbf{1}}, \cdots, \mathbf{w}_{\mathbf{m}}, T\left(\mathbf{v}_{\mathbf{m}+\mathbf{1}}\right), \cdots, T\left(\mathbf{v}_{\mathbf{n}}\right)\right\}$ of W. Now calculate $[T]_{\beta}^{\gamma}$.

Additional Problem 1: Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $T(x, y)=\sqrt[3]{x^{3}+y^{3}}$. Show that $T(c \mathbf{u})=c T(\mathbf{u})$ but T is not linear

Additional Problem 2: Suppose $\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}$ are fixed vectors in V, and define $T: \mathbb{F}^{n} \rightarrow V$:

$$
T\left(a_{1}, \cdots, a_{n}\right)=a_{1} \mathbf{v}_{\mathbf{1}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}
$$

(a) Show T is one-to-one if and only if $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is linearly independent
(b) Show T is onto V if and only if $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ spans V

