LECTURE 22 - SYSTEMS OF LINEAR EQUATIONS (III) (SECTIONS 2.3.2)

WELCOME TO OUR FINAL LECTURE ON SYSTEMS OF EQUATIONS! TODAY WE'LL DISCUSS SOME MISCELLANEOUS TOPICS RELATED TO SYSTEMS, STARTING WITH A USEFUL DESCRIPTION OF SOLUTIONS:

I - HOMOGENEOUS AND PARTICULAR SOLUTIONS

Theorem The general solution of \(Ax = \mathbf{b} \) is of the form

\[
 x = x_0 + x_p
\]

where

\[
 x_0 = \text{general solution of } Ax = 0 = \text{null}(A)
\]

\[
 x_p = \text{particular solution of } Ax = b
\]

Example Solution of

\[
 \begin{bmatrix}
 1 & 1 \\
 1 & 1
 \end{bmatrix} x = \begin{bmatrix} 3 \\ 2 \end{bmatrix}
\]

is

\[
 x = t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

\[
 A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad Ax = 0 \Rightarrow \text{one sol.}
\]

of \(Ax = b \)

Why? 1) If \(x = x_0 + x_p \), then

\[
 Ax = A(x_0 + x_p) = Ax_0 + Ax_p = 0
\]

2) Convenient, if \(x \) solves \(Ax = b \), let \(y = x - x_p \)

Then

\[
 Ay = A(x - x_p) = Ax - Ax_p = A(x_0 + x_p) - Ax_p
\]

so \(y \) solves \(Ay = 0 \), so \(y = x_0 \) for some \(x_0 \in \text{null}(A) \)

Thus

\[
 x = y + x_p = x_0 + x_p
\]
II. Some Remarks / Consequences

(Never use this theorem to solve $Ax = b$, it's more useful for theory)

1) Geometric description of $Ax = b$

Theorem says: Solutions of $Ax = b$ are just translations of Null(A)

$A\mathbf{x} = \mathbf{b}$

\[x = x_0 + x_p \]

Null(A)

$A\mathbf{x} = 0$

So geometrically, all the $Ax = b$ look the same as $Ax = 0$.

This is why Null(A) is so important, it "controls" all the solutions.

2) Can use this to show $Ax = b$ can only have 0, 1, or many solutions.

Exactly one sol

3) Fact: If A is square and $Ax = b$ has a solution for some b,

Then $Ax = b$ has a sol for all b.

Exactly one

Why? In this case, we must have Null(A) = \{0\} because otherwise $Ax = 0$ would have 0 on infinitely many solutions

$x = \text{Null}(A) + x_p$

But Null(A) = \{0\} \Rightarrow Null(A) = \{0\}

\[L = A - I \Rightarrow A \text{ is invertible} \]
Hence for any \(\mathbf{b} \), \(\mathbf{Ax} = \mathbf{b} \) has a unique solution \(\mathbf{x} = \mathbf{A}^{-1} \mathbf{b} \).

9) A similar result holds for differential equations (see HNLP).

III - BASIS

(Back to practical things! The nice thing about row-reduction is that it simplifies tasks that used to be tedious.)

EX Find a subset of \(S \) that is a basis for span \((S) \), where

\[
S = \left\{ (2, -3, 5), (2, -1, 2), (1, 0, -2), (0, 2, -1), (7, 2, 0) \right\}
\]

(Before eliminating LD vectors, but now much easier!)

Find a basis for \(\text{col}(A) \), where:

\[
A = \begin{bmatrix}
2 & 0 & 1 & 0 & 2 \\
-3 & -2 & 0 & 2 & 2 \\
5 & 2 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \quad \rightarrow \quad A' = \begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Ans: \(\left\{ (2, -3, 5), (1, 0, -2), (0, 2, -1) \right\} \) (That was easy!)

III - SUMMARY OF NIEF

In fact, let me use the previous EX to "prove" you of some facts about NIEF.

FACTS If \(\mathbf{A} \sim \mathbf{A}' \) and \(\mathbf{A}' \) is in NIEF, then:

1) \(\mathbf{A}' \) has \(r \) nonzero rows, \(r = \text{rank}(\mathbf{A}) \)

Here: \(r \) nonzero rows

Why? \(\text{rank}(\mathbf{A}) = \# \text{ pivots} = \# \text{ pivot rows} \)
2) ONE COL OF A' IS $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, ANOTHER ONE e_2, AND SO ON UNTIL e_k, $k = \text{RANK}(A)$

HERE: $e_1 = \text{COL}(1)$, $e_2 = \text{COL}(3)$, $e_3 = \text{COL}(4)$...

3) THE PIVOT COLS OF A ARE LI (WHY? SEE LAST TIME)

HERE: COLS 1, 3, 4 OF A ARE LI

4) THE LIN DEP RELATIONS OF THE NON-PIVOT COLS ARE PRESERVED

EX For A', \[
\begin{bmatrix} 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ so for } A, \begin{bmatrix} \frac{8}{2} \\ \frac{2}{2} \end{bmatrix} = 4 \begin{bmatrix} \frac{2}{5} \\ \frac{2}{5} \end{bmatrix}
\]

This last fact is super useful to reconstruct A from E.

EX Suppose $A' = \begin{bmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ is INVERSE of A

Find A if cols 1, 3, 4 of A are \[
\begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}, \begin{bmatrix} 22 \\ 28 \\ 33 \end{bmatrix}
\]

Ans $A = \begin{bmatrix} 1 & 2 & 4 & 7 & 22 \\ 2 & 4 & 5 & 8 & 28 \\ 3 & 6 & 6 & 9 & 33 \end{bmatrix}$

2 COL(1) 2 COL(1) + 7 COL(4)

Notice\[
\begin{bmatrix} \frac{2}{3} \\ \frac{3}{3} \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \text{ so } 2 \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \end{bmatrix} = \begin{bmatrix} \frac{22}{3} \\ \frac{28}{3} \end{bmatrix}
\]

COL(5) = 2 COL(1) + 7 COL(4)
T - Basis Extension

(LASTLY, WE CAN USE THIS IDEA TO EXTEND A LT SUBSET TO A BASIS.
WE ALREADY KNOW THAT WE CAN DO THIS IN THEORY, BUT NOW WE CAN DO IT IN PRACTICE)

EX
\[S = \{ (-2,0,0,1), (1,1,-2,-1) \} \] IS A LT SUBSET OF \(V = \mathbb{R}^4 \)

EXTEND S TO A BASIS OF \(\mathbb{R}^4 \)

1) **Pick any \(u \in V \) of \(V \), say**

\[u = \{ (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) \} \]

2) **Consider**

\[\begin{bmatrix} u \mid \beta \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ \end{bmatrix} \]

\[A = \begin{bmatrix} 5 \\ \beta \end{bmatrix} \]

\[A = \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 0 & 0 & 1/2 \\ -1/2 & 0 & 0 & 1/2 \end{bmatrix} \]

Ans
\[\{ (-2,0,0,1), (1,1,-2,-1), (1,0,0,0), (0,1,0,0) \} \] BASIS OF \(V = \mathbb{R}^4 \)

Note
For general \(V \subseteq \mathbb{F}^n \), first find a basis \(\beta \) of \(V \) and use the same trick with \(A = [S \mid \beta] \) (See 3.4).

Why Works
The first two columns of \(A \) must be pivot columns,
so we get a linear dependence in \(S \) (by 4), so get \(\beta \) \(S \) containing those pivot cols, that is containing \(S \).