MATH 121A - MIDTERM REVIEW SESSION

Problem 1: Suppose W_{1} and W_{2} are subspaces of a vector space V. Show that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.

Solution: Union of subspaces
Problem 2: Suppose W and Z are subspaces of a vector space V. We say $V=W \oplus Z$ if $V=W+Z$ and $W \cap Z=\{0\}$. Suppose $V=W \oplus Z$ and suppose $\left\{w_{1}, \cdots, w_{m}\right\}$ is a basis of W and $\left\{z_{1}, \cdots, z_{k}\right\}$ is a basis of Z. Show that $\left\{w_{1}, \cdots, w_{m}, z_{1}, \cdots, z_{k}\right\}$ is a basis of V

Solution: Direct Sums
Problem 3: Let $V=C^{\infty}(\mathbb{R})$ (the space of infinitely-differentiable functions from \mathbb{R} to \mathbb{R}), and define $D: V \rightarrow V$ by $D(f)=f^{\prime}$. Show that $\left\{D, D^{2}, D^{3}\right\}$ is linearly independent in $\mathcal{L}(V)$.

Solution: Derivative is linearly independent
Problem 4: Suppose V and W are vector spaces with $\operatorname{dim}(V) \geq \operatorname{dim}(W)$, and suppose Z is a subspace of W. Show that there exists a linear transformation $T: V \rightarrow W$ whose range is equal to Z.

Solution: Linear Transformation with a given range
Problem 5: Define $T: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ by $T\left(a_{0}+a_{1} x\right)=\left(5 a_{0}+2 a_{1}, 2 a_{0}+a_{1}\right)$. Find a formula for T^{-1}.

Solution: Calculate T^{-1}

Date: Friday, May 3, 2019.

