LECTURE 28 - DIAGONALIZABILITY (I) (SECTION 5.4)

Previously on Captain Peyamnica, we learned about diagonalization, which is a near way of transforming a matrix into a diagonal matrix.

Recall A is diagonalizable \iff there is a basis of \mathbb{F}^n consisting of eigenvectors of A.

Main: How to concretely check if A is diagonalizable.

(Note: all the results are true with for LT T and matrices A.

I - Key Lemma will frequently switch between the two)

It all relies on the following key lemma:

Theorem: If $\lambda_1, \ldots, \lambda_n$ are distinct eigenvalues of T and v_1, \ldots, v_n are the corresponding eigenvectors, then $\{v_1, \ldots, v_n\}$ is LI

(“Eigenvectors corresponding to \neq eigenvalues are LI”)

Ex: $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ $\begin{array}{l} \lambda_1 = -1 \implies \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \ \ \ \ \ \lambda_2 = 3 \implies \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{array}$

This says $\{\begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\}$ is automatically LI (why? a basis of \mathbb{R}^2)

Why? induction on n

1) Base ($n=1$) $\{v_1\}$ is LI. (since $v \neq 0$)

2) Ind. Suppose $Pn-1$ is true, show Pn is true.

Let v_1, \ldots, v_n be eigenvectors corresponding to $\lambda_1, \ldots, \lambda_n$ (distinct)

And suppose $a_1 v_1 + \cdots + a_n v_n = 0$ (**)
3) On the one hand, apply T to $+$:

$$T(a_1 v_1 + \cdots + a_n v_n) = T(0) = 0$$

$$a_1 T(v_1) + \cdots + a_n T(v_n) = 0$$

$$a_1 v_1 + \cdots + a_n v_n = 0 \quad (1)$$

4) On the other hand, multiply $+$ by 1, (THICK!)

$$1 \cdot (a_1 v_1 + \cdots + a_n v_n) = 1 \cdot 0$$

$$a_1 v_1 + \cdots + a_n v_n = 0 \quad (2)$$

5) Subtract the two:

$$a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = 0$$

$$-(a_1 v_1 + a_2 v_2 + \cdots + a_n v_n) = 0$$

$$a_2 (v_1 - v_2) + \cdots + a_n (v_n - v_1) = 0$$

6) By induction hyp., (v_1, \ldots, v_n) are (\perp, \perp) so

Since a_1, \ldots, a_n are distinct

$$a_1 (v_1 - v_1) = 0$$

$$\Rightarrow a_1 = 0$$

Therefore, $a_1 v_1 = 0 \Rightarrow a_1 = 0$ (since $v_1 \neq 0$)
II. Eigenvectors

(NEED TO CHECK WHETHER A IS DIAGONALIZABLE OR NOT. LUCKILY, THERE ARE BUNCH OF USEFUL TESTS.) THE FIRST ONE CONCERNS THE CHARACTERISTIC POLYNOMIAL.

DEF. A POLYNOMIAL \(\phi(t) \) SPLIT OVER \(F \) IF

\[
\phi(t) = C(t-a_1) \cdots (t-a_n)
\]

For some \(a_i, C \in F \)

EX. \(\phi(t) = t^4 - 5t + 6 = (t-1)(t+3) \) SPLIT OVER \(\mathbb{R} \)

EX. \(\phi(t) = t^2 + 1 \) DOESN'T SPLIT OVER \(\mathbb{R} \), BUT SPLIT OVER \(\mathbb{C} \)

BECAUSE \(\phi(t) = (t-i)(t+i) \)

(IN FACT ANY POLY SPLIT OVER \(\mathbb{C} \), WHICH MAKES \(C \) SO NICE)

FACT. IF \(T \) IS DIAGONALIZABLE, THEN \(\phi(t) = \text{CHAR POLY OF } T \) MUST SPLIT.

WHY? BY ASSUMPTION, THERE IS A BASIS \(\beta \) SUCH THAT

\[
[T]_\beta \text{ IS DIAGONAL } = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}
\]

THEN \(\phi(t) = \text{DEF} \left([T]_\beta^m - tI \right) \)

DEF

\[
= \begin{vmatrix} \lambda_1 - t \\ \vdots \\ \lambda_n - t \end{vmatrix}
\]

\[
= \begin{vmatrix} (\lambda_1 - t) \cdots (\lambda_n - t) \\ \vdots \\ - (t-\lambda_1) \cdots - (t-\lambda_n) \end{vmatrix}
\]

\[
= (-1)^n \cdot \prod_{i=1}^{n} (t-\lambda_i) \in \mathbb{R} \quad \text{or } \mathbb{C}
\]
Test #1

If \(f(t) \) does not split, then \(T \) (or \(A \)) is not diagonalizable!

\[A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \]

\[f(t) = \begin{vmatrix} -t & -1 \\ 1 & -t \end{vmatrix} = t^2 + 1 \rightarrow \text{does not split (over } \mathbb{R}) \text{, so } A \text{ is not diagonalizable.} \]

Note

From now on, we assume \(f(t) \) splits.

III - Eigenvalue Test

(The next one concerns the eigenvalues of \(A \))

Test #2

If \(A \) (\(n \times n \)) has \(n \) distinct eigenvalues, then \(A \) is diagonalizable.

Ex.

\[A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \]

has 2 eigenvalues: \(\lambda = 2, 3 \) (check)

so diagonalizable.

Why?

Let \(\lambda_1, \ldots, \lambda_n \) be the distinct eigenvalues of \(A \).

Let \(v_1, \ldots, v_n \) be the corresponding eigenvectors.

**By key lemma, \(\{v_1, \ldots, v_n\} \) is \(LT \), so a basis of \(\mathbb{F}^n \)

\(n \) vectors.

Hence get a basis of \(\mathbb{F}^n \) of eigenvectors of \(A \).

\[\text{But } A \text{ could still be diagonalizable even if } A \text{ only has } \]

1 eigenvalue! (Ex. \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), \(\lambda = 1 \) but \(A \) diagonal.)
IV - EIGENVECTOR TEST

(If everything else fails, that is the char poly splits and we do not have distinct eigenvalues, then we really have to look at the eigenvectors.)

Important Ex is $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ diagonalizable?

Eigenvalues $\lambda(t) = \text{det}(A - tI) = \begin{vmatrix} 1-t & 1 \\ 0 & 1-t \end{vmatrix} = (1-t)^2 = 0$

$\Rightarrow \lambda = 1$ with (algebraic) multiplicity $M_1 = 2$

Eigenvectors $\lambda = 1$: $\text{null}(A - I) = \text{null}\left[\begin{bmatrix} 1-1 & 1 \\ 0 & 1-1 \end{bmatrix} = \text{null}\left[\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right] \right] = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

(Eigenspace for $\lambda = 1$)

Intuitively not enough eigenvectors, so not diagonalizable

(How can you get a basis of \mathbb{R}^2 with just 1 eigenvector?)

Diagonally $\text{dim}(E_1) = 1 < 2 = M_1$ (multiplicity of λ_1)

So not diagonalizable

\Rightarrow **Ultimate Test #3** suppose A has eigenvalues $\lambda_1, \ldots, \lambda_k$ with multiplicities M_1, \ldots, M_k

Then A is diagonalizable iff

"The eigenspace E_i is as big as possible."

$\text{dim}(E_i) = M_i$ for all $i = 1, \ldots, k$