MATH 121A - FINAL EXAM REVIEW SESSION

Note: Most of those problems are taken from the book, and you can refer to the solutions on the following webpage: Solutions

Problem 1: Let V be the space of sequences with values in \mathbb{R}, and define $L: V \rightarrow V$ and $R: V \rightarrow V$ (the left-shift and right-shift transformations) by:

$$
L\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(a_{2}, a_{3}, \cdots\right) \quad R\left(a_{1}, a_{2}, \cdots\right)=\left(0, a_{1}, a_{2}, \cdots\right)
$$

(a) Show that L is onto, but not one-to-one, and R is one-to-one but not onto
(b) Show that $L R=I$ but $R L \neq I$
(c) Find the eigenvalues of L and the eigenvalues of R (if they exist)

Note: Here you need to use the definition of eigenvalues, since we're dealing with an infinite dimensional vector space

Solution: Oh Shift!
Problem 2: (24 in 4.3) Show by induction on n that $\operatorname{det}(A+t I)=a_{0}+$ $a_{1} t+\cdots+a_{n-1} t^{n-1}+t^{n}$, where

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{0} \\
-1 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & -1 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & a_{n-1}
\end{array}\right]
$$

Solution: Neat Determinant
Problem 3: (Theorem 5.11 on page 278)
Definition: Let W_{1}, \cdots, W_{k} be subspaces of V. Then $V=W_{1} \oplus \cdots \oplus W_{k}$ iff the following two conditions are satisfied:
(1) $V=W_{1}+\cdots+W_{k}$

Date: Tuesday, June 11, 2019.
(2) If $w_{1}+\cdots+w_{k}=0$ (where $w_{i} \in W_{i}$), then $w_{1}=\cdots=w_{k}=0$ Suppose $T: V \rightarrow V$ has eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$ and $V=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{k}}$ Show that T is diagonalizable.

Hint: For each $i=1, \cdots, k$, let β_{i} be a basis for $E_{\lambda_{i}}$, then show $\beta=$ $\beta_{1} \cup \cdots \cup \beta_{k}$ is a basis of V. This is very similar to the proof given in Lecture 29.

Solution: Diagonalization and Direct Sums (the first half only)
Problem 4: (20a in 2.6) Suppose V and W are finite-dimensional, and suppose $T: V \rightarrow W$. Show that T is onto if and only if T^{T} (the transpose of T) is one-to-one.

Hint: First show that if W^{\prime} is a proper subspace of $W, f \in W^{\star}$ with f nonzero but $f(x)=0$ for all $x \in W^{\prime}$.

Solution: One-to-one iff onto

Problem 5: (21 in 4.3) Show that if $M \in M_{n \times n}(F)$ can be written in the form

$$
M=\left[\begin{array}{ll}
A & B \\
O & C
\end{array}\right]
$$

where A and C are square matrices, then $\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(C)$.
Hint: First show that $\operatorname{det}(M)$ is zero if C is not invertible (argue in terms of pivots), then prove the result holds if $A=I$ (do induction on the size of I), and you can similarly assume the result holds for $C=I$. Finally use

$$
\left[\begin{array}{ll}
A & B \\
O & C
\end{array}\right]=\left[\begin{array}{cc}
I & O \\
O & C^{-1}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
O & C
\end{array}\right]
$$

Solution: Determinant of a Block Matrix
Problem 6: (29a in 1.6) Suppose V is finite-dimensional and W_{1} and W_{2} are subspaces of V. Show

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

Hint: Start with a basis β of $W_{1} \cap W_{2}$. On the one hand, extend extend β to a basis β_{1} of W_{1}. On the other hand, extend β to a basis β_{2} of W_{2}. Show
$\beta_{1} \cup \beta_{2}$ is a basis of $W_{1}+W_{2}$.
Solution: $\operatorname{dim}\left(W_{1}+W_{2}\right)$
Problem 7: (35 in 2.1) Suppose V is finite-dimensional and $T: V \rightarrow V$. Show:

$$
V=R(T)+N(T) \Leftrightarrow R(T) \cap N(T)=\{0\}
$$

Hint: Use Problem 6

Problem 8: (16 in 2.2) Suppose V and W are finite-dimensional with $\operatorname{dim}(V)=\operatorname{dim}(W)$, and suppose $T: V \rightarrow W$ is linear. Show there there exist ordered bases β and γ of V and W respectively such that $[T]_{\beta}^{\gamma}$ is diagonal.

Hint: Start with a basis of $N(T)$ and mimic the proof of the rank-nullity theorem to find a basis of $R(T)$, and then extend it to a basis γ of W.

Solution: Pseudo Diagonalization
Problem 9: Let $S=\left\{v_{1}, \cdots v_{n}\right\}$ be a subset of V (not necessarily a basis), and define $T: \mathbb{F}^{n} \rightarrow V$ by:

$$
T\left(a_{1}, \cdots, a_{n}\right)=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

(a) Show T is one-to-one if and only if S is linearly independent
(b) Show T is onto V if and only if S spans V

Solution: One-to-one iff linearly independent
Problem 10: (3 in 3.4) Show that $A x=b$ is inconsistent if and only if the last column of $[A \mid b]$ is a pivot column

Hint: Use the rank criterion (Theorem 3.11) and remember that the rank is equal to the number of pivots

Solution: Rank Criterion Consequences

